| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfinite |
|- ( A e. Fin <-> A ~< _om ) |
| 2 |
1
|
notbii |
|- ( -. A e. Fin <-> -. A ~< _om ) |
| 3 |
|
relen |
|- Rel ~~ |
| 4 |
3
|
brrelex1i |
|- ( X ~~ _om -> X e. _V ) |
| 5 |
|
ssdomg |
|- ( X e. _V -> ( A C_ X -> A ~<_ X ) ) |
| 6 |
4 5
|
syl |
|- ( X ~~ _om -> ( A C_ X -> A ~<_ X ) ) |
| 7 |
|
domen2 |
|- ( X ~~ _om -> ( A ~<_ X <-> A ~<_ _om ) ) |
| 8 |
6 7
|
sylibd |
|- ( X ~~ _om -> ( A C_ X -> A ~<_ _om ) ) |
| 9 |
8
|
imp |
|- ( ( X ~~ _om /\ A C_ X ) -> A ~<_ _om ) |
| 10 |
|
brdom2 |
|- ( A ~<_ _om <-> ( A ~< _om \/ A ~~ _om ) ) |
| 11 |
9 10
|
sylib |
|- ( ( X ~~ _om /\ A C_ X ) -> ( A ~< _om \/ A ~~ _om ) ) |
| 12 |
11
|
adantlr |
|- ( ( ( X ~~ _om /\ Y ~~ _om ) /\ A C_ X ) -> ( A ~< _om \/ A ~~ _om ) ) |
| 13 |
12
|
ord |
|- ( ( ( X ~~ _om /\ Y ~~ _om ) /\ A C_ X ) -> ( -. A ~< _om -> A ~~ _om ) ) |
| 14 |
2 13
|
biimtrid |
|- ( ( ( X ~~ _om /\ Y ~~ _om ) /\ A C_ X ) -> ( -. A e. Fin -> A ~~ _om ) ) |
| 15 |
14
|
impr |
|- ( ( ( X ~~ _om /\ Y ~~ _om ) /\ ( A C_ X /\ -. A e. Fin ) ) -> A ~~ _om ) |
| 16 |
|
enen2 |
|- ( Y ~~ _om -> ( A ~~ Y <-> A ~~ _om ) ) |
| 17 |
16
|
ad2antlr |
|- ( ( ( X ~~ _om /\ Y ~~ _om ) /\ ( A C_ X /\ -. A e. Fin ) ) -> ( A ~~ Y <-> A ~~ _om ) ) |
| 18 |
15 17
|
mpbird |
|- ( ( ( X ~~ _om /\ Y ~~ _om ) /\ ( A C_ X /\ -. A e. Fin ) ) -> A ~~ Y ) |