| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmeq |  |-  ( A = B -> dom A = dom B ) | 
						
							| 2 | 1 | dmeqd |  |-  ( A = B -> dom dom A = dom dom B ) | 
						
							| 3 |  | breq |  |-  ( A = B -> ( <. x , y >. A z <-> <. x , y >. B z ) ) | 
						
							| 4 | 3 | opabbidv |  |-  ( A = B -> { <. y , z >. | <. x , y >. A z } = { <. y , z >. | <. x , y >. B z } ) | 
						
							| 5 | 2 4 | mpteq12dv |  |-  ( A = B -> ( x e. dom dom A |-> { <. y , z >. | <. x , y >. A z } ) = ( x e. dom dom B |-> { <. y , z >. | <. x , y >. B z } ) ) | 
						
							| 6 |  | df-cur |  |-  curry A = ( x e. dom dom A |-> { <. y , z >. | <. x , y >. A z } ) | 
						
							| 7 |  | df-cur |  |-  curry B = ( x e. dom dom B |-> { <. y , z >. | <. x , y >. B z } ) | 
						
							| 8 | 5 6 7 | 3eqtr4g |  |-  ( A = B -> curry A = curry B ) |