Step |
Hyp |
Ref |
Expression |
1 |
|
dmeq |
|- ( A = B -> dom A = dom B ) |
2 |
1
|
dmeqd |
|- ( A = B -> dom dom A = dom dom B ) |
3 |
|
breq |
|- ( A = B -> ( <. x , y >. A z <-> <. x , y >. B z ) ) |
4 |
3
|
opabbidv |
|- ( A = B -> { <. y , z >. | <. x , y >. A z } = { <. y , z >. | <. x , y >. B z } ) |
5 |
2 4
|
mpteq12dv |
|- ( A = B -> ( x e. dom dom A |-> { <. y , z >. | <. x , y >. A z } ) = ( x e. dom dom B |-> { <. y , z >. | <. x , y >. B z } ) ) |
6 |
|
df-cur |
|- curry A = ( x e. dom dom A |-> { <. y , z >. | <. x , y >. A z } ) |
7 |
|
df-cur |
|- curry B = ( x e. dom dom B |-> { <. y , z >. | <. x , y >. B z } ) |
8 |
5 6 7
|
3eqtr4g |
|- ( A = B -> curry A = curry B ) |