Metamath Proof Explorer


Theorem cureq

Description: Equality theorem for currying. (Contributed by Brendan Leahy, 2-Jun-2021)

Ref Expression
Assertion cureq A=BcurryA=curryB

Proof

Step Hyp Ref Expression
1 dmeq A=BdomA=domB
2 1 dmeqd A=BdomdomA=domdomB
3 breq A=BxyAzxyBz
4 3 opabbidv A=Byz|xyAz=yz|xyBz
5 2 4 mpteq12dv A=BxdomdomAyz|xyAz=xdomdomByz|xyBz
6 df-cur curryA=xdomdomAyz|xyAz
7 df-cur curryB=xdomdomByz|xyBz
8 5 6 7 3eqtr4g A=BcurryA=curryB