Metamath Proof Explorer


Theorem cureq

Description: Equality theorem for currying. (Contributed by Brendan Leahy, 2-Jun-2021)

Ref Expression
Assertion cureq A = B curry A = curry B

Proof

Step Hyp Ref Expression
1 dmeq A = B dom A = dom B
2 1 dmeqd A = B dom dom A = dom dom B
3 breq A = B x y A z x y B z
4 3 opabbidv A = B y z | x y A z = y z | x y B z
5 2 4 mpteq12dv A = B x dom dom A y z | x y A z = x dom dom B y z | x y B z
6 df-cur curry A = x dom dom A y z | x y A z
7 df-cur curry B = x dom dom B y z | x y B z
8 5 6 7 3eqtr4g A = B curry A = curry B