Metamath Proof Explorer


Theorem unceq

Description: Equality theorem for uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021)

Ref Expression
Assertion unceq A = B uncurry A = uncurry B

Proof

Step Hyp Ref Expression
1 fveq1 A = B A x = B x
2 1 breqd A = B y A x z y B x z
3 2 oprabbidv A = B x y z | y A x z = x y z | y B x z
4 df-unc uncurry A = x y z | y A x z
5 df-unc uncurry B = x y z | y B x z
6 3 4 5 3eqtr4g A = B uncurry A = uncurry B