Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Brendan Leahy
unceq
Next ⟩
curf
Metamath Proof Explorer
Ascii
Unicode
Theorem
unceq
Description:
Equality theorem for uncurrying.
(Contributed by
Brendan Leahy
, 2-Jun-2021)
Ref
Expression
Assertion
unceq
⊢
A
=
B
→
uncurry
A
=
uncurry
B
Proof
Step
Hyp
Ref
Expression
1
fveq1
⊢
A
=
B
→
A
⁡
x
=
B
⁡
x
2
1
breqd
⊢
A
=
B
→
y
A
⁡
x
z
↔
y
B
⁡
x
z
3
2
oprabbidv
⊢
A
=
B
→
x
y
z
|
y
A
⁡
x
z
=
x
y
z
|
y
B
⁡
x
z
4
df-unc
⊢
uncurry
A
=
x
y
z
|
y
A
⁡
x
z
5
df-unc
⊢
uncurry
B
=
x
y
z
|
y
B
⁡
x
z
6
3
4
5
3eqtr4g
⊢
A
=
B
→
uncurry
A
=
uncurry
B