Metamath Proof Explorer


Theorem unceq

Description: Equality theorem for uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021)

Ref Expression
Assertion unceq ( 𝐴 = 𝐵 → uncurry 𝐴 = uncurry 𝐵 )

Proof

Step Hyp Ref Expression
1 fveq1 ( 𝐴 = 𝐵 → ( 𝐴𝑥 ) = ( 𝐵𝑥 ) )
2 1 breqd ( 𝐴 = 𝐵 → ( 𝑦 ( 𝐴𝑥 ) 𝑧𝑦 ( 𝐵𝑥 ) 𝑧 ) )
3 2 oprabbidv ( 𝐴 = 𝐵 → { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝑦 ( 𝐴𝑥 ) 𝑧 } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝑦 ( 𝐵𝑥 ) 𝑧 } )
4 df-unc uncurry 𝐴 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝑦 ( 𝐴𝑥 ) 𝑧 }
5 df-unc uncurry 𝐵 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝑦 ( 𝐵𝑥 ) 𝑧 }
6 3 4 5 3eqtr4g ( 𝐴 = 𝐵 → uncurry 𝐴 = uncurry 𝐵 )