Metamath Proof Explorer


Theorem unceq

Description: Equality theorem for uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021)

Ref Expression
Assertion unceq
|- ( A = B -> uncurry A = uncurry B )

Proof

Step Hyp Ref Expression
1 fveq1
 |-  ( A = B -> ( A ` x ) = ( B ` x ) )
2 1 breqd
 |-  ( A = B -> ( y ( A ` x ) z <-> y ( B ` x ) z ) )
3 2 oprabbidv
 |-  ( A = B -> { <. <. x , y >. , z >. | y ( A ` x ) z } = { <. <. x , y >. , z >. | y ( B ` x ) z } )
4 df-unc
 |-  uncurry A = { <. <. x , y >. , z >. | y ( A ` x ) z }
5 df-unc
 |-  uncurry B = { <. <. x , y >. , z >. | y ( B ` x ) z }
6 3 4 5 3eqtr4g
 |-  ( A = B -> uncurry A = uncurry B )