Description: Equality theorem for uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | unceq | |- ( A = B -> uncurry A = uncurry B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 | |- ( A = B -> ( A ` x ) = ( B ` x ) ) |
|
2 | 1 | breqd | |- ( A = B -> ( y ( A ` x ) z <-> y ( B ` x ) z ) ) |
3 | 2 | oprabbidv | |- ( A = B -> { <. <. x , y >. , z >. | y ( A ` x ) z } = { <. <. x , y >. , z >. | y ( B ` x ) z } ) |
4 | df-unc | |- uncurry A = { <. <. x , y >. , z >. | y ( A ` x ) z } |
|
5 | df-unc | |- uncurry B = { <. <. x , y >. , z >. | y ( B ` x ) z } |
|
6 | 3 4 5 | 3eqtr4g | |- ( A = B -> uncurry A = uncurry B ) |