Description: Equality theorem for uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unceq | |- ( A = B -> uncurry A = uncurry B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fveq1 | |- ( A = B -> ( A ` x ) = ( B ` x ) ) | |
| 2 | 1 | breqd | |- ( A = B -> ( y ( A ` x ) z <-> y ( B ` x ) z ) ) | 
| 3 | 2 | oprabbidv |  |-  ( A = B -> { <. <. x , y >. , z >. | y ( A ` x ) z } = { <. <. x , y >. , z >. | y ( B ` x ) z } ) | 
| 4 | df-unc |  |-  uncurry A = { <. <. x , y >. , z >. | y ( A ` x ) z } | |
| 5 | df-unc |  |-  uncurry B = { <. <. x , y >. , z >. | y ( B ` x ) z } | |
| 6 | 3 4 5 | 3eqtr4g | |- ( A = B -> uncurry A = uncurry B ) |