| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oprabbidv.1 |  |-  ( ph -> ( ps <-> ch ) ) | 
						
							| 2 | 1 | anbi2d |  |-  ( ph -> ( ( w = <. <. x , y >. , z >. /\ ps ) <-> ( w = <. <. x , y >. , z >. /\ ch ) ) ) | 
						
							| 3 | 2 | exbidv |  |-  ( ph -> ( E. z ( w = <. <. x , y >. , z >. /\ ps ) <-> E. z ( w = <. <. x , y >. , z >. /\ ch ) ) ) | 
						
							| 4 | 3 | exbidv |  |-  ( ph -> ( E. y E. z ( w = <. <. x , y >. , z >. /\ ps ) <-> E. y E. z ( w = <. <. x , y >. , z >. /\ ch ) ) ) | 
						
							| 5 | 4 | exbidv |  |-  ( ph -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ps ) <-> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ch ) ) ) | 
						
							| 6 | 5 | abbidv |  |-  ( ph -> { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ps ) } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ch ) } ) | 
						
							| 7 |  | df-oprab |  |-  { <. <. x , y >. , z >. | ps } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ps ) } | 
						
							| 8 |  | df-oprab |  |-  { <. <. x , y >. , z >. | ch } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ch ) } | 
						
							| 9 | 6 7 8 | 3eqtr4g |  |-  ( ph -> { <. <. x , y >. , z >. | ps } = { <. <. x , y >. , z >. | ch } ) |