Metamath Proof Explorer


Theorem cusgredgex2

Description: Any two distinct vertices in a complete simple graph are connected to each other by an edge. (Contributed by BTernaryTau, 4-Oct-2023)

Ref Expression
Hypotheses cusgredgex2.1
|- V = ( Vtx ` G )
cusgredgex2.2
|- E = ( Edg ` G )
Assertion cusgredgex2
|- ( G e. ComplUSGraph -> ( ( A e. V /\ B e. V /\ A =/= B ) -> { A , B } e. E ) )

Proof

Step Hyp Ref Expression
1 cusgredgex2.1
 |-  V = ( Vtx ` G )
2 cusgredgex2.2
 |-  E = ( Edg ` G )
3 eldifsn
 |-  ( B e. ( V \ { A } ) <-> ( B e. V /\ B =/= A ) )
4 necom
 |-  ( B =/= A <-> A =/= B )
5 4 anbi2i
 |-  ( ( B e. V /\ B =/= A ) <-> ( B e. V /\ A =/= B ) )
6 3 5 sylbbr
 |-  ( ( B e. V /\ A =/= B ) -> B e. ( V \ { A } ) )
7 6 anim2i
 |-  ( ( A e. V /\ ( B e. V /\ A =/= B ) ) -> ( A e. V /\ B e. ( V \ { A } ) ) )
8 7 3impb
 |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> ( A e. V /\ B e. ( V \ { A } ) ) )
9 1 2 cusgredgex
 |-  ( G e. ComplUSGraph -> ( ( A e. V /\ B e. ( V \ { A } ) ) -> { A , B } e. E ) )
10 8 9 syl5
 |-  ( G e. ComplUSGraph -> ( ( A e. V /\ B e. V /\ A =/= B ) -> { A , B } e. E ) )