Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
2 |
1
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom ( iEdg ` G ) ) |
3 |
2
|
adantr |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> F e. Word dom ( iEdg ` G ) ) |
4 |
|
pfxcl |
|- ( F e. Word dom ( iEdg ` G ) -> ( F prefix L ) e. Word dom ( iEdg ` G ) ) |
5 |
3 4
|
syl |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( F prefix L ) e. Word dom ( iEdg ` G ) ) |
6 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
7 |
6
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
8 |
7
|
adantr |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
9 |
|
elfzuz3 |
|- ( L e. ( 0 ... ( # ` F ) ) -> ( # ` F ) e. ( ZZ>= ` L ) ) |
10 |
|
fzss2 |
|- ( ( # ` F ) e. ( ZZ>= ` L ) -> ( 0 ... L ) C_ ( 0 ... ( # ` F ) ) ) |
11 |
9 10
|
syl |
|- ( L e. ( 0 ... ( # ` F ) ) -> ( 0 ... L ) C_ ( 0 ... ( # ` F ) ) ) |
12 |
11
|
adantl |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( 0 ... L ) C_ ( 0 ... ( # ` F ) ) ) |
13 |
8 12
|
fssresd |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( P |` ( 0 ... L ) ) : ( 0 ... L ) --> ( Vtx ` G ) ) |
14 |
|
pfxlen |
|- ( ( F e. Word dom ( iEdg ` G ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( # ` ( F prefix L ) ) = L ) |
15 |
2 14
|
sylan |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( # ` ( F prefix L ) ) = L ) |
16 |
15
|
oveq2d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( 0 ... ( # ` ( F prefix L ) ) ) = ( 0 ... L ) ) |
17 |
16
|
feq2d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ( P |` ( 0 ... L ) ) : ( 0 ... ( # ` ( F prefix L ) ) ) --> ( Vtx ` G ) <-> ( P |` ( 0 ... L ) ) : ( 0 ... L ) --> ( Vtx ` G ) ) ) |
18 |
13 17
|
mpbird |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( P |` ( 0 ... L ) ) : ( 0 ... ( # ` ( F prefix L ) ) ) --> ( Vtx ` G ) ) |
19 |
6
|
wlkpwrd |
|- ( F ( Walks ` G ) P -> P e. Word ( Vtx ` G ) ) |
20 |
|
fzp1elp1 |
|- ( L e. ( 0 ... ( # ` F ) ) -> ( L + 1 ) e. ( 0 ... ( ( # ` F ) + 1 ) ) ) |
21 |
20
|
adantl |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( L + 1 ) e. ( 0 ... ( ( # ` F ) + 1 ) ) ) |
22 |
|
wlklenvp1 |
|- ( F ( Walks ` G ) P -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
23 |
22
|
oveq2d |
|- ( F ( Walks ` G ) P -> ( 0 ... ( # ` P ) ) = ( 0 ... ( ( # ` F ) + 1 ) ) ) |
24 |
23
|
adantr |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( 0 ... ( # ` P ) ) = ( 0 ... ( ( # ` F ) + 1 ) ) ) |
25 |
21 24
|
eleqtrrd |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( L + 1 ) e. ( 0 ... ( # ` P ) ) ) |
26 |
|
pfxres |
|- ( ( P e. Word ( Vtx ` G ) /\ ( L + 1 ) e. ( 0 ... ( # ` P ) ) ) -> ( P prefix ( L + 1 ) ) = ( P |` ( 0 ..^ ( L + 1 ) ) ) ) |
27 |
19 25 26
|
syl2an2r |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( P prefix ( L + 1 ) ) = ( P |` ( 0 ..^ ( L + 1 ) ) ) ) |
28 |
|
elfzelz |
|- ( L e. ( 0 ... ( # ` F ) ) -> L e. ZZ ) |
29 |
|
fzval3 |
|- ( L e. ZZ -> ( 0 ... L ) = ( 0 ..^ ( L + 1 ) ) ) |
30 |
28 29
|
syl |
|- ( L e. ( 0 ... ( # ` F ) ) -> ( 0 ... L ) = ( 0 ..^ ( L + 1 ) ) ) |
31 |
30
|
adantl |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( 0 ... L ) = ( 0 ..^ ( L + 1 ) ) ) |
32 |
31
|
reseq2d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( P |` ( 0 ... L ) ) = ( P |` ( 0 ..^ ( L + 1 ) ) ) ) |
33 |
27 32
|
eqtr4d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( P prefix ( L + 1 ) ) = ( P |` ( 0 ... L ) ) ) |
34 |
33
|
feq1d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ( P prefix ( L + 1 ) ) : ( 0 ... ( # ` ( F prefix L ) ) ) --> ( Vtx ` G ) <-> ( P |` ( 0 ... L ) ) : ( 0 ... ( # ` ( F prefix L ) ) ) --> ( Vtx ` G ) ) ) |
35 |
18 34
|
mpbird |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( P prefix ( L + 1 ) ) : ( 0 ... ( # ` ( F prefix L ) ) ) --> ( Vtx ` G ) ) |
36 |
6 1
|
wlkprop |
|- ( F ( Walks ` G ) P -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. x e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) ) ) |
37 |
36
|
simp3d |
|- ( F ( Walks ` G ) P -> A. x e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) ) |
38 |
37
|
adantr |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> A. x e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) ) |
39 |
38
|
adantr |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> A. x e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) ) |
40 |
15
|
oveq2d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( 0 ..^ ( # ` ( F prefix L ) ) ) = ( 0 ..^ L ) ) |
41 |
40
|
eleq2d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) <-> k e. ( 0 ..^ L ) ) ) |
42 |
33
|
fveq1d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P |` ( 0 ... L ) ) ` k ) ) |
43 |
42
|
adantr |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P |` ( 0 ... L ) ) ` k ) ) |
44 |
|
fzossfz |
|- ( 0 ..^ L ) C_ ( 0 ... L ) |
45 |
44
|
a1i |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( 0 ..^ L ) C_ ( 0 ... L ) ) |
46 |
45
|
sselda |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> k e. ( 0 ... L ) ) |
47 |
46
|
fvresd |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( P |` ( 0 ... L ) ) ` k ) = ( P ` k ) ) |
48 |
43 47
|
eqtr2d |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) ) |
49 |
33
|
fveq1d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) = ( ( P |` ( 0 ... L ) ) ` ( k + 1 ) ) ) |
50 |
49
|
adantr |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) = ( ( P |` ( 0 ... L ) ) ` ( k + 1 ) ) ) |
51 |
|
fzofzp1 |
|- ( k e. ( 0 ..^ L ) -> ( k + 1 ) e. ( 0 ... L ) ) |
52 |
51
|
adantl |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( k + 1 ) e. ( 0 ... L ) ) |
53 |
52
|
fvresd |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( P |` ( 0 ... L ) ) ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) ) |
54 |
50 53
|
eqtr2d |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) |
55 |
48 54
|
jca |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) ) |
56 |
55
|
ex |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( k e. ( 0 ..^ L ) -> ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) ) ) |
57 |
41 56
|
sylbid |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) -> ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) ) ) |
58 |
57
|
imp |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) ) |
59 |
3
|
ancli |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ F e. Word dom ( iEdg ` G ) ) ) |
60 |
|
simpr |
|- ( ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ F e. Word dom ( iEdg ` G ) ) /\ k e. ( 0 ..^ L ) ) -> k e. ( 0 ..^ L ) ) |
61 |
60
|
fvresd |
|- ( ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ F e. Word dom ( iEdg ` G ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( F |` ( 0 ..^ L ) ) ` k ) = ( F ` k ) ) |
62 |
61
|
fveq2d |
|- ( ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ F e. Word dom ( iEdg ` G ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( iEdg ` G ) ` ( ( F |` ( 0 ..^ L ) ) ` k ) ) = ( ( iEdg ` G ) ` ( F ` k ) ) ) |
63 |
59 62
|
sylan |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( iEdg ` G ) ` ( ( F |` ( 0 ..^ L ) ) ` k ) ) = ( ( iEdg ` G ) ` ( F ` k ) ) ) |
64 |
63
|
eqcomd |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F |` ( 0 ..^ L ) ) ` k ) ) ) |
65 |
64
|
ex |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( k e. ( 0 ..^ L ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F |` ( 0 ..^ L ) ) ` k ) ) ) ) |
66 |
41 65
|
sylbid |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F |` ( 0 ..^ L ) ) ` k ) ) ) ) |
67 |
66
|
imp |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F |` ( 0 ..^ L ) ) ` k ) ) ) |
68 |
|
simplr |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> L e. ( 0 ... ( # ` F ) ) ) |
69 |
|
pfxres |
|- ( ( F e. Word dom ( iEdg ` G ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( F prefix L ) = ( F |` ( 0 ..^ L ) ) ) |
70 |
3 68 69
|
syl2an2r |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( F prefix L ) = ( F |` ( 0 ..^ L ) ) ) |
71 |
70
|
fveq1d |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( ( F prefix L ) ` k ) = ( ( F |` ( 0 ..^ L ) ) ` k ) ) |
72 |
71
|
fveq2d |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = ( ( iEdg ` G ) ` ( ( F |` ( 0 ..^ L ) ) ` k ) ) ) |
73 |
67 72
|
eqtr4d |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) |
74 |
58 73
|
jca |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) |
75 |
9
|
adantl |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( # ` F ) e. ( ZZ>= ` L ) ) |
76 |
15
|
fveq2d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ZZ>= ` ( # ` ( F prefix L ) ) ) = ( ZZ>= ` L ) ) |
77 |
75 76
|
eleqtrrd |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( # ` F ) e. ( ZZ>= ` ( # ` ( F prefix L ) ) ) ) |
78 |
|
fzoss2 |
|- ( ( # ` F ) e. ( ZZ>= ` ( # ` ( F prefix L ) ) ) -> ( 0 ..^ ( # ` ( F prefix L ) ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
79 |
77 78
|
syl |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( 0 ..^ ( # ` ( F prefix L ) ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
80 |
79
|
sselda |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> k e. ( 0 ..^ ( # ` F ) ) ) |
81 |
|
wkslem1 |
|- ( x = k -> ( if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) <-> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
82 |
81
|
rspcv |
|- ( k e. ( 0 ..^ ( # ` F ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
83 |
80 82
|
syl |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
84 |
|
eqeq12 |
|- ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) -> ( ( P ` k ) = ( P ` ( k + 1 ) ) <-> ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) ) |
85 |
84
|
adantr |
|- ( ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) -> ( ( P ` k ) = ( P ` ( k + 1 ) ) <-> ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) ) |
86 |
|
simpr |
|- ( ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) |
87 |
|
sneq |
|- ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) -> { ( P ` k ) } = { ( ( P prefix ( L + 1 ) ) ` k ) } ) |
88 |
87
|
adantr |
|- ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) -> { ( P ` k ) } = { ( ( P prefix ( L + 1 ) ) ` k ) } ) |
89 |
88
|
adantr |
|- ( ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) -> { ( P ` k ) } = { ( ( P prefix ( L + 1 ) ) ` k ) } ) |
90 |
86 89
|
eqeq12d |
|- ( ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } <-> ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = { ( ( P prefix ( L + 1 ) ) ` k ) } ) ) |
91 |
|
preq12 |
|- ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } ) |
92 |
91
|
adantr |
|- ( ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } ) |
93 |
92 86
|
sseq12d |
|- ( ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) <-> { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) |
94 |
85 90 93
|
ifpbi123d |
|- ( ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) <-> if- ( ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = { ( ( P prefix ( L + 1 ) ) ` k ) } , { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) ) |
95 |
94
|
biimpd |
|- ( ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> if- ( ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = { ( ( P prefix ( L + 1 ) ) ` k ) } , { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) ) |
96 |
74 83 95
|
sylsyld |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) -> if- ( ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = { ( ( P prefix ( L + 1 ) ) ` k ) } , { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) ) |
97 |
39 96
|
mpd |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> if- ( ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = { ( ( P prefix ( L + 1 ) ) ` k ) } , { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) |
98 |
97
|
ralrimiva |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> A. k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) if- ( ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = { ( ( P prefix ( L + 1 ) ) ` k ) } , { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) |
99 |
|
wlkv |
|- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
100 |
99
|
simp1d |
|- ( F ( Walks ` G ) P -> G e. _V ) |
101 |
100
|
adantr |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> G e. _V ) |
102 |
6 1
|
iswlkg |
|- ( G e. _V -> ( ( F prefix L ) ( Walks ` G ) ( P prefix ( L + 1 ) ) <-> ( ( F prefix L ) e. Word dom ( iEdg ` G ) /\ ( P prefix ( L + 1 ) ) : ( 0 ... ( # ` ( F prefix L ) ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) if- ( ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = { ( ( P prefix ( L + 1 ) ) ` k ) } , { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) ) ) |
103 |
101 102
|
syl |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ( F prefix L ) ( Walks ` G ) ( P prefix ( L + 1 ) ) <-> ( ( F prefix L ) e. Word dom ( iEdg ` G ) /\ ( P prefix ( L + 1 ) ) : ( 0 ... ( # ` ( F prefix L ) ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) if- ( ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = { ( ( P prefix ( L + 1 ) ) ` k ) } , { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) ) ) |
104 |
5 35 98 103
|
mpbir3and |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( F prefix L ) ( Walks ` G ) ( P prefix ( L + 1 ) ) ) |