| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 2 |
1
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom ( iEdg ` G ) ) |
| 3 |
2
|
adantr |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> F e. Word dom ( iEdg ` G ) ) |
| 4 |
|
pfxcl |
|- ( F e. Word dom ( iEdg ` G ) -> ( F prefix L ) e. Word dom ( iEdg ` G ) ) |
| 5 |
3 4
|
syl |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( F prefix L ) e. Word dom ( iEdg ` G ) ) |
| 6 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 7 |
6
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 8 |
7
|
adantr |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 9 |
|
elfzuz3 |
|- ( L e. ( 0 ... ( # ` F ) ) -> ( # ` F ) e. ( ZZ>= ` L ) ) |
| 10 |
|
fzss2 |
|- ( ( # ` F ) e. ( ZZ>= ` L ) -> ( 0 ... L ) C_ ( 0 ... ( # ` F ) ) ) |
| 11 |
9 10
|
syl |
|- ( L e. ( 0 ... ( # ` F ) ) -> ( 0 ... L ) C_ ( 0 ... ( # ` F ) ) ) |
| 12 |
11
|
adantl |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( 0 ... L ) C_ ( 0 ... ( # ` F ) ) ) |
| 13 |
8 12
|
fssresd |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( P |` ( 0 ... L ) ) : ( 0 ... L ) --> ( Vtx ` G ) ) |
| 14 |
|
pfxlen |
|- ( ( F e. Word dom ( iEdg ` G ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( # ` ( F prefix L ) ) = L ) |
| 15 |
2 14
|
sylan |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( # ` ( F prefix L ) ) = L ) |
| 16 |
15
|
oveq2d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( 0 ... ( # ` ( F prefix L ) ) ) = ( 0 ... L ) ) |
| 17 |
16
|
feq2d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ( P |` ( 0 ... L ) ) : ( 0 ... ( # ` ( F prefix L ) ) ) --> ( Vtx ` G ) <-> ( P |` ( 0 ... L ) ) : ( 0 ... L ) --> ( Vtx ` G ) ) ) |
| 18 |
13 17
|
mpbird |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( P |` ( 0 ... L ) ) : ( 0 ... ( # ` ( F prefix L ) ) ) --> ( Vtx ` G ) ) |
| 19 |
6
|
wlkpwrd |
|- ( F ( Walks ` G ) P -> P e. Word ( Vtx ` G ) ) |
| 20 |
|
fzp1elp1 |
|- ( L e. ( 0 ... ( # ` F ) ) -> ( L + 1 ) e. ( 0 ... ( ( # ` F ) + 1 ) ) ) |
| 21 |
20
|
adantl |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( L + 1 ) e. ( 0 ... ( ( # ` F ) + 1 ) ) ) |
| 22 |
|
wlklenvp1 |
|- ( F ( Walks ` G ) P -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
| 23 |
22
|
oveq2d |
|- ( F ( Walks ` G ) P -> ( 0 ... ( # ` P ) ) = ( 0 ... ( ( # ` F ) + 1 ) ) ) |
| 24 |
23
|
adantr |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( 0 ... ( # ` P ) ) = ( 0 ... ( ( # ` F ) + 1 ) ) ) |
| 25 |
21 24
|
eleqtrrd |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( L + 1 ) e. ( 0 ... ( # ` P ) ) ) |
| 26 |
|
pfxres |
|- ( ( P e. Word ( Vtx ` G ) /\ ( L + 1 ) e. ( 0 ... ( # ` P ) ) ) -> ( P prefix ( L + 1 ) ) = ( P |` ( 0 ..^ ( L + 1 ) ) ) ) |
| 27 |
19 25 26
|
syl2an2r |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( P prefix ( L + 1 ) ) = ( P |` ( 0 ..^ ( L + 1 ) ) ) ) |
| 28 |
|
elfzelz |
|- ( L e. ( 0 ... ( # ` F ) ) -> L e. ZZ ) |
| 29 |
|
fzval3 |
|- ( L e. ZZ -> ( 0 ... L ) = ( 0 ..^ ( L + 1 ) ) ) |
| 30 |
28 29
|
syl |
|- ( L e. ( 0 ... ( # ` F ) ) -> ( 0 ... L ) = ( 0 ..^ ( L + 1 ) ) ) |
| 31 |
30
|
adantl |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( 0 ... L ) = ( 0 ..^ ( L + 1 ) ) ) |
| 32 |
31
|
reseq2d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( P |` ( 0 ... L ) ) = ( P |` ( 0 ..^ ( L + 1 ) ) ) ) |
| 33 |
27 32
|
eqtr4d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( P prefix ( L + 1 ) ) = ( P |` ( 0 ... L ) ) ) |
| 34 |
33
|
feq1d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ( P prefix ( L + 1 ) ) : ( 0 ... ( # ` ( F prefix L ) ) ) --> ( Vtx ` G ) <-> ( P |` ( 0 ... L ) ) : ( 0 ... ( # ` ( F prefix L ) ) ) --> ( Vtx ` G ) ) ) |
| 35 |
18 34
|
mpbird |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( P prefix ( L + 1 ) ) : ( 0 ... ( # ` ( F prefix L ) ) ) --> ( Vtx ` G ) ) |
| 36 |
6 1
|
wlkprop |
|- ( F ( Walks ` G ) P -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. x e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) ) ) |
| 37 |
36
|
simp3d |
|- ( F ( Walks ` G ) P -> A. x e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) ) |
| 38 |
37
|
adantr |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> A. x e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) ) |
| 39 |
38
|
adantr |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> A. x e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) ) |
| 40 |
15
|
oveq2d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( 0 ..^ ( # ` ( F prefix L ) ) ) = ( 0 ..^ L ) ) |
| 41 |
40
|
eleq2d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) <-> k e. ( 0 ..^ L ) ) ) |
| 42 |
33
|
fveq1d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P |` ( 0 ... L ) ) ` k ) ) |
| 43 |
42
|
adantr |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P |` ( 0 ... L ) ) ` k ) ) |
| 44 |
|
fzossfz |
|- ( 0 ..^ L ) C_ ( 0 ... L ) |
| 45 |
44
|
a1i |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( 0 ..^ L ) C_ ( 0 ... L ) ) |
| 46 |
45
|
sselda |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> k e. ( 0 ... L ) ) |
| 47 |
46
|
fvresd |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( P |` ( 0 ... L ) ) ` k ) = ( P ` k ) ) |
| 48 |
43 47
|
eqtr2d |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) ) |
| 49 |
33
|
fveq1d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) = ( ( P |` ( 0 ... L ) ) ` ( k + 1 ) ) ) |
| 50 |
49
|
adantr |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) = ( ( P |` ( 0 ... L ) ) ` ( k + 1 ) ) ) |
| 51 |
|
fzofzp1 |
|- ( k e. ( 0 ..^ L ) -> ( k + 1 ) e. ( 0 ... L ) ) |
| 52 |
51
|
adantl |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( k + 1 ) e. ( 0 ... L ) ) |
| 53 |
52
|
fvresd |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( P |` ( 0 ... L ) ) ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) ) |
| 54 |
50 53
|
eqtr2d |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) |
| 55 |
48 54
|
jca |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) ) |
| 56 |
55
|
ex |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( k e. ( 0 ..^ L ) -> ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) ) ) |
| 57 |
41 56
|
sylbid |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) -> ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) ) ) |
| 58 |
57
|
imp |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) ) |
| 59 |
3
|
ancli |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ F e. Word dom ( iEdg ` G ) ) ) |
| 60 |
|
simpr |
|- ( ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ F e. Word dom ( iEdg ` G ) ) /\ k e. ( 0 ..^ L ) ) -> k e. ( 0 ..^ L ) ) |
| 61 |
60
|
fvresd |
|- ( ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ F e. Word dom ( iEdg ` G ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( F |` ( 0 ..^ L ) ) ` k ) = ( F ` k ) ) |
| 62 |
61
|
fveq2d |
|- ( ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ F e. Word dom ( iEdg ` G ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( iEdg ` G ) ` ( ( F |` ( 0 ..^ L ) ) ` k ) ) = ( ( iEdg ` G ) ` ( F ` k ) ) ) |
| 63 |
59 62
|
sylan |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( iEdg ` G ) ` ( ( F |` ( 0 ..^ L ) ) ` k ) ) = ( ( iEdg ` G ) ` ( F ` k ) ) ) |
| 64 |
63
|
eqcomd |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ L ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F |` ( 0 ..^ L ) ) ` k ) ) ) |
| 65 |
64
|
ex |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( k e. ( 0 ..^ L ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F |` ( 0 ..^ L ) ) ` k ) ) ) ) |
| 66 |
41 65
|
sylbid |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F |` ( 0 ..^ L ) ) ` k ) ) ) ) |
| 67 |
66
|
imp |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F |` ( 0 ..^ L ) ) ` k ) ) ) |
| 68 |
|
simplr |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> L e. ( 0 ... ( # ` F ) ) ) |
| 69 |
|
pfxres |
|- ( ( F e. Word dom ( iEdg ` G ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( F prefix L ) = ( F |` ( 0 ..^ L ) ) ) |
| 70 |
3 68 69
|
syl2an2r |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( F prefix L ) = ( F |` ( 0 ..^ L ) ) ) |
| 71 |
70
|
fveq1d |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( ( F prefix L ) ` k ) = ( ( F |` ( 0 ..^ L ) ) ` k ) ) |
| 72 |
71
|
fveq2d |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = ( ( iEdg ` G ) ` ( ( F |` ( 0 ..^ L ) ) ` k ) ) ) |
| 73 |
67 72
|
eqtr4d |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) |
| 74 |
58 73
|
jca |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) |
| 75 |
9
|
adantl |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( # ` F ) e. ( ZZ>= ` L ) ) |
| 76 |
15
|
fveq2d |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ZZ>= ` ( # ` ( F prefix L ) ) ) = ( ZZ>= ` L ) ) |
| 77 |
75 76
|
eleqtrrd |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( # ` F ) e. ( ZZ>= ` ( # ` ( F prefix L ) ) ) ) |
| 78 |
|
fzoss2 |
|- ( ( # ` F ) e. ( ZZ>= ` ( # ` ( F prefix L ) ) ) -> ( 0 ..^ ( # ` ( F prefix L ) ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 79 |
77 78
|
syl |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( 0 ..^ ( # ` ( F prefix L ) ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 80 |
79
|
sselda |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> k e. ( 0 ..^ ( # ` F ) ) ) |
| 81 |
|
wkslem1 |
|- ( x = k -> ( if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) <-> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 82 |
81
|
rspcv |
|- ( k e. ( 0 ..^ ( # ` F ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 83 |
80 82
|
syl |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 84 |
|
eqeq12 |
|- ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) -> ( ( P ` k ) = ( P ` ( k + 1 ) ) <-> ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) ) |
| 85 |
84
|
adantr |
|- ( ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) -> ( ( P ` k ) = ( P ` ( k + 1 ) ) <-> ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) ) |
| 86 |
|
simpr |
|- ( ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) |
| 87 |
|
sneq |
|- ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) -> { ( P ` k ) } = { ( ( P prefix ( L + 1 ) ) ` k ) } ) |
| 88 |
87
|
adantr |
|- ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) -> { ( P ` k ) } = { ( ( P prefix ( L + 1 ) ) ` k ) } ) |
| 89 |
88
|
adantr |
|- ( ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) -> { ( P ` k ) } = { ( ( P prefix ( L + 1 ) ) ` k ) } ) |
| 90 |
86 89
|
eqeq12d |
|- ( ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } <-> ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = { ( ( P prefix ( L + 1 ) ) ` k ) } ) ) |
| 91 |
|
preq12 |
|- ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } ) |
| 92 |
91
|
adantr |
|- ( ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } ) |
| 93 |
92 86
|
sseq12d |
|- ( ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) <-> { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) |
| 94 |
85 90 93
|
ifpbi123d |
|- ( ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) <-> if- ( ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = { ( ( P prefix ( L + 1 ) ) ` k ) } , { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) ) |
| 95 |
94
|
biimpd |
|- ( ( ( ( P ` k ) = ( ( P prefix ( L + 1 ) ) ` k ) /\ ( P ` ( k + 1 ) ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> if- ( ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = { ( ( P prefix ( L + 1 ) ) ` k ) } , { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) ) |
| 96 |
74 83 95
|
sylsyld |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) -> if- ( ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = { ( ( P prefix ( L + 1 ) ) ` k ) } , { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) ) |
| 97 |
39 96
|
mpd |
|- ( ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) /\ k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) ) -> if- ( ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = { ( ( P prefix ( L + 1 ) ) ` k ) } , { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) |
| 98 |
97
|
ralrimiva |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> A. k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) if- ( ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = { ( ( P prefix ( L + 1 ) ) ` k ) } , { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) |
| 99 |
|
wlkv |
|- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
| 100 |
99
|
simp1d |
|- ( F ( Walks ` G ) P -> G e. _V ) |
| 101 |
100
|
adantr |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> G e. _V ) |
| 102 |
6 1
|
iswlkg |
|- ( G e. _V -> ( ( F prefix L ) ( Walks ` G ) ( P prefix ( L + 1 ) ) <-> ( ( F prefix L ) e. Word dom ( iEdg ` G ) /\ ( P prefix ( L + 1 ) ) : ( 0 ... ( # ` ( F prefix L ) ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) if- ( ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = { ( ( P prefix ( L + 1 ) ) ` k ) } , { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) ) ) |
| 103 |
101 102
|
syl |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ( F prefix L ) ( Walks ` G ) ( P prefix ( L + 1 ) ) <-> ( ( F prefix L ) e. Word dom ( iEdg ` G ) /\ ( P prefix ( L + 1 ) ) : ( 0 ... ( # ` ( F prefix L ) ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` ( F prefix L ) ) ) if- ( ( ( P prefix ( L + 1 ) ) ` k ) = ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) = { ( ( P prefix ( L + 1 ) ) ` k ) } , { ( ( P prefix ( L + 1 ) ) ` k ) , ( ( P prefix ( L + 1 ) ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( F prefix L ) ` k ) ) ) ) ) ) |
| 104 |
5 35 98 103
|
mpbir3and |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( F prefix L ) ( Walks ` G ) ( P prefix ( L + 1 ) ) ) |