Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
2 |
1
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom ( iEdg ` G ) ) |
3 |
|
revcl |
|- ( F e. Word dom ( iEdg ` G ) -> ( reverse ` F ) e. Word dom ( iEdg ` G ) ) |
4 |
2 3
|
syl |
|- ( F ( Walks ` G ) P -> ( reverse ` F ) e. Word dom ( iEdg ` G ) ) |
5 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
6 |
5
|
wlkpwrd |
|- ( F ( Walks ` G ) P -> P e. Word ( Vtx ` G ) ) |
7 |
|
revcl |
|- ( P e. Word ( Vtx ` G ) -> ( reverse ` P ) e. Word ( Vtx ` G ) ) |
8 |
|
wrdf |
|- ( ( reverse ` P ) e. Word ( Vtx ` G ) -> ( reverse ` P ) : ( 0 ..^ ( # ` ( reverse ` P ) ) ) --> ( Vtx ` G ) ) |
9 |
6 7 8
|
3syl |
|- ( F ( Walks ` G ) P -> ( reverse ` P ) : ( 0 ..^ ( # ` ( reverse ` P ) ) ) --> ( Vtx ` G ) ) |
10 |
|
revlen |
|- ( F e. Word dom ( iEdg ` G ) -> ( # ` ( reverse ` F ) ) = ( # ` F ) ) |
11 |
2 10
|
syl |
|- ( F ( Walks ` G ) P -> ( # ` ( reverse ` F ) ) = ( # ` F ) ) |
12 |
11
|
oveq2d |
|- ( F ( Walks ` G ) P -> ( 0 ... ( # ` ( reverse ` F ) ) ) = ( 0 ... ( # ` F ) ) ) |
13 |
|
wlklenvp1 |
|- ( F ( Walks ` G ) P -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
14 |
13
|
oveq2d |
|- ( F ( Walks ` G ) P -> ( 0 ..^ ( # ` P ) ) = ( 0 ..^ ( ( # ` F ) + 1 ) ) ) |
15 |
|
revlen |
|- ( P e. Word ( Vtx ` G ) -> ( # ` ( reverse ` P ) ) = ( # ` P ) ) |
16 |
6 15
|
syl |
|- ( F ( Walks ` G ) P -> ( # ` ( reverse ` P ) ) = ( # ` P ) ) |
17 |
16
|
oveq2d |
|- ( F ( Walks ` G ) P -> ( 0 ..^ ( # ` ( reverse ` P ) ) ) = ( 0 ..^ ( # ` P ) ) ) |
18 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
19 |
18
|
nn0zd |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. ZZ ) |
20 |
|
fzval3 |
|- ( ( # ` F ) e. ZZ -> ( 0 ... ( # ` F ) ) = ( 0 ..^ ( ( # ` F ) + 1 ) ) ) |
21 |
19 20
|
syl |
|- ( F ( Walks ` G ) P -> ( 0 ... ( # ` F ) ) = ( 0 ..^ ( ( # ` F ) + 1 ) ) ) |
22 |
14 17 21
|
3eqtr4rd |
|- ( F ( Walks ` G ) P -> ( 0 ... ( # ` F ) ) = ( 0 ..^ ( # ` ( reverse ` P ) ) ) ) |
23 |
12 22
|
eqtrd |
|- ( F ( Walks ` G ) P -> ( 0 ... ( # ` ( reverse ` F ) ) ) = ( 0 ..^ ( # ` ( reverse ` P ) ) ) ) |
24 |
23
|
feq2d |
|- ( F ( Walks ` G ) P -> ( ( reverse ` P ) : ( 0 ... ( # ` ( reverse ` F ) ) ) --> ( Vtx ` G ) <-> ( reverse ` P ) : ( 0 ..^ ( # ` ( reverse ` P ) ) ) --> ( Vtx ` G ) ) ) |
25 |
9 24
|
mpbird |
|- ( F ( Walks ` G ) P -> ( reverse ` P ) : ( 0 ... ( # ` ( reverse ` F ) ) ) --> ( Vtx ` G ) ) |
26 |
11
|
oveq2d |
|- ( F ( Walks ` G ) P -> ( 0 ..^ ( # ` ( reverse ` F ) ) ) = ( 0 ..^ ( # ` F ) ) ) |
27 |
26
|
eleq2d |
|- ( F ( Walks ` G ) P -> ( k e. ( 0 ..^ ( # ` ( reverse ` F ) ) ) <-> k e. ( 0 ..^ ( # ` F ) ) ) ) |
28 |
27
|
biimpa |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` ( reverse ` F ) ) ) ) -> k e. ( 0 ..^ ( # ` F ) ) ) |
29 |
|
revfv |
|- ( ( F e. Word dom ( iEdg ` G ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( reverse ` F ) ` k ) = ( F ` ( ( ( # ` F ) - 1 ) - k ) ) ) |
30 |
2 29
|
sylan |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( reverse ` F ) ` k ) = ( F ` ( ( ( # ` F ) - 1 ) - k ) ) ) |
31 |
|
wlklenvm1 |
|- ( F ( Walks ` G ) P -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |
32 |
31
|
oveq1d |
|- ( F ( Walks ` G ) P -> ( ( # ` F ) - 1 ) = ( ( ( # ` P ) - 1 ) - 1 ) ) |
33 |
|
lencl |
|- ( P e. Word ( Vtx ` G ) -> ( # ` P ) e. NN0 ) |
34 |
33
|
nn0cnd |
|- ( P e. Word ( Vtx ` G ) -> ( # ` P ) e. CC ) |
35 |
|
sub1m1 |
|- ( ( # ` P ) e. CC -> ( ( ( # ` P ) - 1 ) - 1 ) = ( ( # ` P ) - 2 ) ) |
36 |
6 34 35
|
3syl |
|- ( F ( Walks ` G ) P -> ( ( ( # ` P ) - 1 ) - 1 ) = ( ( # ` P ) - 2 ) ) |
37 |
32 36
|
eqtrd |
|- ( F ( Walks ` G ) P -> ( ( # ` F ) - 1 ) = ( ( # ` P ) - 2 ) ) |
38 |
37
|
fvoveq1d |
|- ( F ( Walks ` G ) P -> ( F ` ( ( ( # ` F ) - 1 ) - k ) ) = ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) |
39 |
38
|
adantr |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` ( ( ( # ` F ) - 1 ) - k ) ) = ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) |
40 |
30 39
|
eqtrd |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( reverse ` F ) ` k ) = ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) |
41 |
40
|
fveq2d |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( iEdg ` G ) ` ( ( reverse ` F ) ` k ) ) = ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) ) |
42 |
41
|
adantr |
|- ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) ) -> ( ( iEdg ` G ) ` ( ( reverse ` F ) ` k ) ) = ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) ) |
43 |
|
fzonn0p1p1 |
|- ( k e. ( 0 ..^ ( # ` F ) ) -> ( k + 1 ) e. ( 0 ..^ ( ( # ` F ) + 1 ) ) ) |
44 |
43
|
adantl |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( k + 1 ) e. ( 0 ..^ ( ( # ` F ) + 1 ) ) ) |
45 |
14
|
adantr |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ..^ ( ( # ` F ) + 1 ) ) ) |
46 |
44 45
|
eleqtrrd |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( k + 1 ) e. ( 0 ..^ ( # ` P ) ) ) |
47 |
|
revfv |
|- ( ( P e. Word ( Vtx ` G ) /\ ( k + 1 ) e. ( 0 ..^ ( # ` P ) ) ) -> ( ( reverse ` P ) ` ( k + 1 ) ) = ( P ` ( ( ( # ` P ) - 1 ) - ( k + 1 ) ) ) ) |
48 |
6 46 47
|
syl2an2r |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( reverse ` P ) ` ( k + 1 ) ) = ( P ` ( ( ( # ` P ) - 1 ) - ( k + 1 ) ) ) ) |
49 |
|
elfzoelz |
|- ( k e. ( 0 ..^ ( # ` F ) ) -> k e. ZZ ) |
50 |
49
|
zcnd |
|- ( k e. ( 0 ..^ ( # ` F ) ) -> k e. CC ) |
51 |
50
|
adantl |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> k e. CC ) |
52 |
|
1cnd |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> 1 e. CC ) |
53 |
51 52
|
addcomd |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( k + 1 ) = ( 1 + k ) ) |
54 |
53
|
oveq2d |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( # ` P ) - 1 ) - ( k + 1 ) ) = ( ( ( # ` P ) - 1 ) - ( 1 + k ) ) ) |
55 |
6 34
|
syl |
|- ( F ( Walks ` G ) P -> ( # ` P ) e. CC ) |
56 |
55
|
adantr |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( # ` P ) e. CC ) |
57 |
56 52
|
subcld |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( # ` P ) - 1 ) e. CC ) |
58 |
57 52 51
|
subsub4d |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( ( # ` P ) - 1 ) - 1 ) - k ) = ( ( ( # ` P ) - 1 ) - ( 1 + k ) ) ) |
59 |
36
|
oveq1d |
|- ( F ( Walks ` G ) P -> ( ( ( ( # ` P ) - 1 ) - 1 ) - k ) = ( ( ( # ` P ) - 2 ) - k ) ) |
60 |
59
|
adantr |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( ( # ` P ) - 1 ) - 1 ) - k ) = ( ( ( # ` P ) - 2 ) - k ) ) |
61 |
54 58 60
|
3eqtr2d |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( # ` P ) - 1 ) - ( k + 1 ) ) = ( ( ( # ` P ) - 2 ) - k ) ) |
62 |
61
|
fveq2d |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` ( ( ( # ` P ) - 1 ) - ( k + 1 ) ) ) = ( P ` ( ( ( # ` P ) - 2 ) - k ) ) ) |
63 |
48 62
|
eqtrd |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( reverse ` P ) ` ( k + 1 ) ) = ( P ` ( ( ( # ` P ) - 2 ) - k ) ) ) |
64 |
63
|
sneqd |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> { ( ( reverse ` P ) ` ( k + 1 ) ) } = { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) } ) |
65 |
64
|
adantr |
|- ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) ) -> { ( ( reverse ` P ) ` ( k + 1 ) ) } = { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) } ) |
66 |
|
sneq |
|- ( ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) -> { ( ( reverse ` P ) ` k ) } = { ( ( reverse ` P ) ` ( k + 1 ) ) } ) |
67 |
66
|
adantl |
|- ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) ) -> { ( ( reverse ` P ) ` k ) } = { ( ( reverse ` P ) ` ( k + 1 ) ) } ) |
68 |
|
eqcom |
|- ( ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) <-> ( ( reverse ` P ) ` ( k + 1 ) ) = ( ( reverse ` P ) ` k ) ) |
69 |
|
fzossfzop1 |
|- ( ( # ` F ) e. NN0 -> ( 0 ..^ ( # ` F ) ) C_ ( 0 ..^ ( ( # ` F ) + 1 ) ) ) |
70 |
18 69
|
syl |
|- ( F ( Walks ` G ) P -> ( 0 ..^ ( # ` F ) ) C_ ( 0 ..^ ( ( # ` F ) + 1 ) ) ) |
71 |
70 14
|
sseqtrrd |
|- ( F ( Walks ` G ) P -> ( 0 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` P ) ) ) |
72 |
71
|
sselda |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> k e. ( 0 ..^ ( # ` P ) ) ) |
73 |
|
revfv |
|- ( ( P e. Word ( Vtx ` G ) /\ k e. ( 0 ..^ ( # ` P ) ) ) -> ( ( reverse ` P ) ` k ) = ( P ` ( ( ( # ` P ) - 1 ) - k ) ) ) |
74 |
6 72 73
|
syl2an2r |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( reverse ` P ) ` k ) = ( P ` ( ( ( # ` P ) - 1 ) - k ) ) ) |
75 |
57 51 52
|
sub32d |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( ( # ` P ) - 1 ) - k ) - 1 ) = ( ( ( ( # ` P ) - 1 ) - 1 ) - k ) ) |
76 |
75
|
oveq1d |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( ( ( # ` P ) - 1 ) - k ) - 1 ) + 1 ) = ( ( ( ( ( # ` P ) - 1 ) - 1 ) - k ) + 1 ) ) |
77 |
57 51
|
subcld |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( # ` P ) - 1 ) - k ) e. CC ) |
78 |
77 52
|
npcand |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( ( ( # ` P ) - 1 ) - k ) - 1 ) + 1 ) = ( ( ( # ` P ) - 1 ) - k ) ) |
79 |
59
|
oveq1d |
|- ( F ( Walks ` G ) P -> ( ( ( ( ( # ` P ) - 1 ) - 1 ) - k ) + 1 ) = ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) |
80 |
79
|
adantr |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( ( ( # ` P ) - 1 ) - 1 ) - k ) + 1 ) = ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) |
81 |
76 78 80
|
3eqtr3d |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( # ` P ) - 1 ) - k ) = ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) |
82 |
81
|
fveq2d |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` ( ( ( # ` P ) - 1 ) - k ) ) = ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) ) |
83 |
74 82
|
eqtrd |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( reverse ` P ) ` k ) = ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) ) |
84 |
63 83
|
eqeq12d |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( reverse ` P ) ` ( k + 1 ) ) = ( ( reverse ` P ) ` k ) <-> ( P ` ( ( ( # ` P ) - 2 ) - k ) ) = ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) ) ) |
85 |
68 84
|
syl5bb |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) <-> ( P ` ( ( ( # ` P ) - 2 ) - k ) ) = ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) ) ) |
86 |
|
wkslem1 |
|- ( x = ( ( ( # ` P ) - 2 ) - k ) -> ( if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) <-> if- ( ( P ` ( ( ( # ` P ) - 2 ) - k ) ) = ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) = { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) } , { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) , ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) ) ) ) |
87 |
5 1
|
wlkprop |
|- ( F ( Walks ` G ) P -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. x e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) ) ) |
88 |
87
|
simp3d |
|- ( F ( Walks ` G ) P -> A. x e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) ) |
89 |
88
|
adantr |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> A. x e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( ( iEdg ` G ) ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` x ) ) ) ) |
90 |
18
|
nn0cnd |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. CC ) |
91 |
90
|
adantr |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( # ` F ) e. CC ) |
92 |
91 51 52
|
sub32d |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( # ` F ) - k ) - 1 ) = ( ( ( # ` F ) - 1 ) - k ) ) |
93 |
37
|
adantr |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( # ` F ) - 1 ) = ( ( # ` P ) - 2 ) ) |
94 |
93
|
oveq1d |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( # ` F ) - 1 ) - k ) = ( ( ( # ` P ) - 2 ) - k ) ) |
95 |
92 94
|
eqtrd |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( # ` F ) - k ) - 1 ) = ( ( ( # ` P ) - 2 ) - k ) ) |
96 |
|
ubmelm1fzo |
|- ( k e. ( 0 ..^ ( # ` F ) ) -> ( ( ( # ` F ) - k ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
97 |
96
|
adantl |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( # ` F ) - k ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
98 |
95 97
|
eqeltrrd |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( # ` P ) - 2 ) - k ) e. ( 0 ..^ ( # ` F ) ) ) |
99 |
86 89 98
|
rspcdva |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> if- ( ( P ` ( ( ( # ` P ) - 2 ) - k ) ) = ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) = { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) } , { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) , ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) ) ) |
100 |
|
dfifp2 |
|- ( if- ( ( P ` ( ( ( # ` P ) - 2 ) - k ) ) = ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) = { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) } , { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) , ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) ) <-> ( ( ( P ` ( ( ( # ` P ) - 2 ) - k ) ) = ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) -> ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) = { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) } ) /\ ( -. ( P ` ( ( ( # ` P ) - 2 ) - k ) ) = ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) -> { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) , ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) ) ) ) |
101 |
99 100
|
sylib |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( P ` ( ( ( # ` P ) - 2 ) - k ) ) = ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) -> ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) = { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) } ) /\ ( -. ( P ` ( ( ( # ` P ) - 2 ) - k ) ) = ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) -> { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) , ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) ) ) ) |
102 |
101
|
simpld |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( P ` ( ( ( # ` P ) - 2 ) - k ) ) = ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) -> ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) = { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) } ) ) |
103 |
85 102
|
sylbid |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) -> ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) = { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) } ) ) |
104 |
103
|
imp |
|- ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) ) -> ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) = { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) } ) |
105 |
65 67 104
|
3eqtr4rd |
|- ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) ) -> ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) = { ( ( reverse ` P ) ` k ) } ) |
106 |
42 105
|
eqtrd |
|- ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) ) -> ( ( iEdg ` G ) ` ( ( reverse ` F ) ` k ) ) = { ( ( reverse ` P ) ` k ) } ) |
107 |
85
|
notbid |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( -. ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) <-> -. ( P ` ( ( ( # ` P ) - 2 ) - k ) ) = ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) ) ) |
108 |
101
|
simprd |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( -. ( P ` ( ( ( # ` P ) - 2 ) - k ) ) = ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) -> { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) , ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) ) ) |
109 |
107 108
|
sylbid |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( -. ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) -> { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) , ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) ) ) |
110 |
109
|
imp |
|- ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ -. ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) ) -> { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) , ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) ) |
111 |
|
prcom |
|- { ( ( reverse ` P ) ` ( k + 1 ) ) , ( ( reverse ` P ) ` k ) } = { ( ( reverse ` P ) ` k ) , ( ( reverse ` P ) ` ( k + 1 ) ) } |
112 |
63 83
|
preq12d |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> { ( ( reverse ` P ) ` ( k + 1 ) ) , ( ( reverse ` P ) ` k ) } = { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) , ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) } ) |
113 |
111 112
|
eqtr3id |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> { ( ( reverse ` P ) ` k ) , ( ( reverse ` P ) ` ( k + 1 ) ) } = { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) , ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) } ) |
114 |
113
|
adantr |
|- ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ -. ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) ) -> { ( ( reverse ` P ) ` k ) , ( ( reverse ` P ) ` ( k + 1 ) ) } = { ( P ` ( ( ( # ` P ) - 2 ) - k ) ) , ( P ` ( ( ( ( # ` P ) - 2 ) - k ) + 1 ) ) } ) |
115 |
41
|
adantr |
|- ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ -. ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) ) -> ( ( iEdg ` G ) ` ( ( reverse ` F ) ` k ) ) = ( ( iEdg ` G ) ` ( F ` ( ( ( # ` P ) - 2 ) - k ) ) ) ) |
116 |
110 114 115
|
3sstr4d |
|- ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ -. ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) ) -> { ( ( reverse ` P ) ` k ) , ( ( reverse ` P ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( reverse ` F ) ` k ) ) ) |
117 |
106 116
|
ifpimpda |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> if- ( ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( reverse ` F ) ` k ) ) = { ( ( reverse ` P ) ` k ) } , { ( ( reverse ` P ) ` k ) , ( ( reverse ` P ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( reverse ` F ) ` k ) ) ) ) |
118 |
28 117
|
syldan |
|- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` ( reverse ` F ) ) ) ) -> if- ( ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( reverse ` F ) ` k ) ) = { ( ( reverse ` P ) ` k ) } , { ( ( reverse ` P ) ` k ) , ( ( reverse ` P ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( reverse ` F ) ` k ) ) ) ) |
119 |
118
|
ralrimiva |
|- ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` ( reverse ` F ) ) ) if- ( ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( reverse ` F ) ` k ) ) = { ( ( reverse ` P ) ` k ) } , { ( ( reverse ` P ) ` k ) , ( ( reverse ` P ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( reverse ` F ) ` k ) ) ) ) |
120 |
|
wlkv |
|- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
121 |
120
|
simp1d |
|- ( F ( Walks ` G ) P -> G e. _V ) |
122 |
5 1
|
iswlkg |
|- ( G e. _V -> ( ( reverse ` F ) ( Walks ` G ) ( reverse ` P ) <-> ( ( reverse ` F ) e. Word dom ( iEdg ` G ) /\ ( reverse ` P ) : ( 0 ... ( # ` ( reverse ` F ) ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` ( reverse ` F ) ) ) if- ( ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( reverse ` F ) ` k ) ) = { ( ( reverse ` P ) ` k ) } , { ( ( reverse ` P ) ` k ) , ( ( reverse ` P ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( reverse ` F ) ` k ) ) ) ) ) ) |
123 |
121 122
|
syl |
|- ( F ( Walks ` G ) P -> ( ( reverse ` F ) ( Walks ` G ) ( reverse ` P ) <-> ( ( reverse ` F ) e. Word dom ( iEdg ` G ) /\ ( reverse ` P ) : ( 0 ... ( # ` ( reverse ` F ) ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` ( reverse ` F ) ) ) if- ( ( ( reverse ` P ) ` k ) = ( ( reverse ` P ) ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( ( reverse ` F ) ` k ) ) = { ( ( reverse ` P ) ` k ) } , { ( ( reverse ` P ) ` k ) , ( ( reverse ` P ) ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( ( reverse ` F ) ` k ) ) ) ) ) ) |
124 |
4 25 119 123
|
mpbir3and |
|- ( F ( Walks ` G ) P -> ( reverse ` F ) ( Walks ` G ) ( reverse ` P ) ) |