| Step |
Hyp |
Ref |
Expression |
| 1 |
|
revwlk |
|- ( F ( Walks ` G ) P -> ( reverse ` F ) ( Walks ` G ) ( reverse ` P ) ) |
| 2 |
|
revwlk |
|- ( ( reverse ` F ) ( Walks ` G ) ( reverse ` P ) -> ( reverse ` ( reverse ` F ) ) ( Walks ` G ) ( reverse ` ( reverse ` P ) ) ) |
| 3 |
|
revrev |
|- ( F e. Word W -> ( reverse ` ( reverse ` F ) ) = F ) |
| 4 |
|
revrev |
|- ( P e. Word U -> ( reverse ` ( reverse ` P ) ) = P ) |
| 5 |
3 4
|
breqan12d |
|- ( ( F e. Word W /\ P e. Word U ) -> ( ( reverse ` ( reverse ` F ) ) ( Walks ` G ) ( reverse ` ( reverse ` P ) ) <-> F ( Walks ` G ) P ) ) |
| 6 |
2 5
|
imbitrid |
|- ( ( F e. Word W /\ P e. Word U ) -> ( ( reverse ` F ) ( Walks ` G ) ( reverse ` P ) -> F ( Walks ` G ) P ) ) |
| 7 |
1 6
|
impbid2 |
|- ( ( F e. Word W /\ P e. Word U ) -> ( F ( Walks ` G ) P <-> ( reverse ` F ) ( Walks ` G ) ( reverse ` P ) ) ) |