| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pfxwlk |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( F prefix L ) ( Walks ` G ) ( P prefix ( L + 1 ) ) ) |
| 2 |
1
|
3adant2 |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( F prefix L ) ( Walks ` G ) ( P prefix ( L + 1 ) ) ) |
| 3 |
|
revwlk |
|- ( ( F prefix L ) ( Walks ` G ) ( P prefix ( L + 1 ) ) -> ( reverse ` ( F prefix L ) ) ( Walks ` G ) ( reverse ` ( P prefix ( L + 1 ) ) ) ) |
| 4 |
2 3
|
syl |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( reverse ` ( F prefix L ) ) ( Walks ` G ) ( reverse ` ( P prefix ( L + 1 ) ) ) ) |
| 5 |
|
fznn0sub2 |
|- ( B e. ( 0 ... L ) -> ( L - B ) e. ( 0 ... L ) ) |
| 6 |
5
|
3ad2ant2 |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( L - B ) e. ( 0 ... L ) ) |
| 7 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 8 |
7
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom ( iEdg ` G ) ) |
| 9 |
8
|
3ad2ant1 |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> F e. Word dom ( iEdg ` G ) ) |
| 10 |
|
pfxcl |
|- ( F e. Word dom ( iEdg ` G ) -> ( F prefix L ) e. Word dom ( iEdg ` G ) ) |
| 11 |
|
revlen |
|- ( ( F prefix L ) e. Word dom ( iEdg ` G ) -> ( # ` ( reverse ` ( F prefix L ) ) ) = ( # ` ( F prefix L ) ) ) |
| 12 |
9 10 11
|
3syl |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( # ` ( reverse ` ( F prefix L ) ) ) = ( # ` ( F prefix L ) ) ) |
| 13 |
|
pfxlen |
|- ( ( F e. Word dom ( iEdg ` G ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( # ` ( F prefix L ) ) = L ) |
| 14 |
8 13
|
sylan |
|- ( ( F ( Walks ` G ) P /\ L e. ( 0 ... ( # ` F ) ) ) -> ( # ` ( F prefix L ) ) = L ) |
| 15 |
14
|
3adant2 |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( # ` ( F prefix L ) ) = L ) |
| 16 |
12 15
|
eqtrd |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( # ` ( reverse ` ( F prefix L ) ) ) = L ) |
| 17 |
16
|
oveq2d |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( 0 ... ( # ` ( reverse ` ( F prefix L ) ) ) ) = ( 0 ... L ) ) |
| 18 |
6 17
|
eleqtrrd |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( L - B ) e. ( 0 ... ( # ` ( reverse ` ( F prefix L ) ) ) ) ) |
| 19 |
|
pfxwlk |
|- ( ( ( reverse ` ( F prefix L ) ) ( Walks ` G ) ( reverse ` ( P prefix ( L + 1 ) ) ) /\ ( L - B ) e. ( 0 ... ( # ` ( reverse ` ( F prefix L ) ) ) ) ) -> ( ( reverse ` ( F prefix L ) ) prefix ( L - B ) ) ( Walks ` G ) ( ( reverse ` ( P prefix ( L + 1 ) ) ) prefix ( ( L - B ) + 1 ) ) ) |
| 20 |
4 18 19
|
syl2anc |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ( reverse ` ( F prefix L ) ) prefix ( L - B ) ) ( Walks ` G ) ( ( reverse ` ( P prefix ( L + 1 ) ) ) prefix ( ( L - B ) + 1 ) ) ) |
| 21 |
|
elfzel2 |
|- ( B e. ( 0 ... L ) -> L e. ZZ ) |
| 22 |
21
|
3ad2ant2 |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> L e. ZZ ) |
| 23 |
22
|
zcnd |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> L e. CC ) |
| 24 |
|
1cnd |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> 1 e. CC ) |
| 25 |
|
elfzelz |
|- ( B e. ( 0 ... L ) -> B e. ZZ ) |
| 26 |
25
|
3ad2ant2 |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> B e. ZZ ) |
| 27 |
26
|
zcnd |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> B e. CC ) |
| 28 |
23 24 27
|
addsubd |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ( L + 1 ) - B ) = ( ( L - B ) + 1 ) ) |
| 29 |
28
|
oveq2d |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ( reverse ` ( P prefix ( L + 1 ) ) ) prefix ( ( L + 1 ) - B ) ) = ( ( reverse ` ( P prefix ( L + 1 ) ) ) prefix ( ( L - B ) + 1 ) ) ) |
| 30 |
20 29
|
breqtrrd |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( ( reverse ` ( F prefix L ) ) prefix ( L - B ) ) ( Walks ` G ) ( ( reverse ` ( P prefix ( L + 1 ) ) ) prefix ( ( L + 1 ) - B ) ) ) |
| 31 |
|
revwlk |
|- ( ( ( reverse ` ( F prefix L ) ) prefix ( L - B ) ) ( Walks ` G ) ( ( reverse ` ( P prefix ( L + 1 ) ) ) prefix ( ( L + 1 ) - B ) ) -> ( reverse ` ( ( reverse ` ( F prefix L ) ) prefix ( L - B ) ) ) ( Walks ` G ) ( reverse ` ( ( reverse ` ( P prefix ( L + 1 ) ) ) prefix ( ( L + 1 ) - B ) ) ) ) |
| 32 |
30 31
|
syl |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( reverse ` ( ( reverse ` ( F prefix L ) ) prefix ( L - B ) ) ) ( Walks ` G ) ( reverse ` ( ( reverse ` ( P prefix ( L + 1 ) ) ) prefix ( ( L + 1 ) - B ) ) ) ) |
| 33 |
|
swrdrevpfx |
|- ( ( F e. Word dom ( iEdg ` G ) /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( F substr <. B , L >. ) = ( reverse ` ( ( reverse ` ( F prefix L ) ) prefix ( L - B ) ) ) ) |
| 34 |
8 33
|
syl3an1 |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( F substr <. B , L >. ) = ( reverse ` ( ( reverse ` ( F prefix L ) ) prefix ( L - B ) ) ) ) |
| 35 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 36 |
35
|
wlkpwrd |
|- ( F ( Walks ` G ) P -> P e. Word ( Vtx ` G ) ) |
| 37 |
36
|
3ad2ant1 |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> P e. Word ( Vtx ` G ) ) |
| 38 |
|
fzelp1 |
|- ( B e. ( 0 ... L ) -> B e. ( 0 ... ( L + 1 ) ) ) |
| 39 |
38
|
3ad2ant2 |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> B e. ( 0 ... ( L + 1 ) ) ) |
| 40 |
|
fzp1elp1 |
|- ( L e. ( 0 ... ( # ` F ) ) -> ( L + 1 ) e. ( 0 ... ( ( # ` F ) + 1 ) ) ) |
| 41 |
40
|
3ad2ant3 |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( L + 1 ) e. ( 0 ... ( ( # ` F ) + 1 ) ) ) |
| 42 |
|
wlklenvp1 |
|- ( F ( Walks ` G ) P -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
| 43 |
42
|
3ad2ant1 |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
| 44 |
43
|
oveq2d |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( 0 ... ( # ` P ) ) = ( 0 ... ( ( # ` F ) + 1 ) ) ) |
| 45 |
41 44
|
eleqtrrd |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( L + 1 ) e. ( 0 ... ( # ` P ) ) ) |
| 46 |
|
swrdrevpfx |
|- ( ( P e. Word ( Vtx ` G ) /\ B e. ( 0 ... ( L + 1 ) ) /\ ( L + 1 ) e. ( 0 ... ( # ` P ) ) ) -> ( P substr <. B , ( L + 1 ) >. ) = ( reverse ` ( ( reverse ` ( P prefix ( L + 1 ) ) ) prefix ( ( L + 1 ) - B ) ) ) ) |
| 47 |
37 39 45 46
|
syl3anc |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( P substr <. B , ( L + 1 ) >. ) = ( reverse ` ( ( reverse ` ( P prefix ( L + 1 ) ) ) prefix ( ( L + 1 ) - B ) ) ) ) |
| 48 |
32 34 47
|
3brtr4d |
|- ( ( F ( Walks ` G ) P /\ B e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` F ) ) ) -> ( F substr <. B , L >. ) ( Walks ` G ) ( P substr <. B , ( L + 1 ) >. ) ) |