Step |
Hyp |
Ref |
Expression |
1 |
|
pfxwlk |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝐿 ) ( Walks ‘ 𝐺 ) ( 𝑃 prefix ( 𝐿 + 1 ) ) ) |
2 |
1
|
3adant2 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝐿 ) ( Walks ‘ 𝐺 ) ( 𝑃 prefix ( 𝐿 + 1 ) ) ) |
3 |
|
revwlk |
⊢ ( ( 𝐹 prefix 𝐿 ) ( Walks ‘ 𝐺 ) ( 𝑃 prefix ( 𝐿 + 1 ) ) → ( reverse ‘ ( 𝐹 prefix 𝐿 ) ) ( Walks ‘ 𝐺 ) ( reverse ‘ ( 𝑃 prefix ( 𝐿 + 1 ) ) ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( reverse ‘ ( 𝐹 prefix 𝐿 ) ) ( Walks ‘ 𝐺 ) ( reverse ‘ ( 𝑃 prefix ( 𝐿 + 1 ) ) ) ) |
5 |
|
fznn0sub2 |
⊢ ( 𝐵 ∈ ( 0 ... 𝐿 ) → ( 𝐿 − 𝐵 ) ∈ ( 0 ... 𝐿 ) ) |
6 |
5
|
3ad2ant2 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐿 − 𝐵 ) ∈ ( 0 ... 𝐿 ) ) |
7 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
8 |
7
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
10 |
|
pfxcl |
⊢ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( 𝐹 prefix 𝐿 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
11 |
|
revlen |
⊢ ( ( 𝐹 prefix 𝐿 ) ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ♯ ‘ ( reverse ‘ ( 𝐹 prefix 𝐿 ) ) ) = ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) |
12 |
9 10 11
|
3syl |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( reverse ‘ ( 𝐹 prefix 𝐿 ) ) ) = ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) |
13 |
|
pfxlen |
⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) = 𝐿 ) |
14 |
8 13
|
sylan |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) = 𝐿 ) |
15 |
14
|
3adant2 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) = 𝐿 ) |
16 |
12 15
|
eqtrd |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( reverse ‘ ( 𝐹 prefix 𝐿 ) ) ) = 𝐿 ) |
17 |
16
|
oveq2d |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 0 ... ( ♯ ‘ ( reverse ‘ ( 𝐹 prefix 𝐿 ) ) ) ) = ( 0 ... 𝐿 ) ) |
18 |
6 17
|
eleqtrrd |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐿 − 𝐵 ) ∈ ( 0 ... ( ♯ ‘ ( reverse ‘ ( 𝐹 prefix 𝐿 ) ) ) ) ) |
19 |
|
pfxwlk |
⊢ ( ( ( reverse ‘ ( 𝐹 prefix 𝐿 ) ) ( Walks ‘ 𝐺 ) ( reverse ‘ ( 𝑃 prefix ( 𝐿 + 1 ) ) ) ∧ ( 𝐿 − 𝐵 ) ∈ ( 0 ... ( ♯ ‘ ( reverse ‘ ( 𝐹 prefix 𝐿 ) ) ) ) ) → ( ( reverse ‘ ( 𝐹 prefix 𝐿 ) ) prefix ( 𝐿 − 𝐵 ) ) ( Walks ‘ 𝐺 ) ( ( reverse ‘ ( 𝑃 prefix ( 𝐿 + 1 ) ) ) prefix ( ( 𝐿 − 𝐵 ) + 1 ) ) ) |
20 |
4 18 19
|
syl2anc |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( reverse ‘ ( 𝐹 prefix 𝐿 ) ) prefix ( 𝐿 − 𝐵 ) ) ( Walks ‘ 𝐺 ) ( ( reverse ‘ ( 𝑃 prefix ( 𝐿 + 1 ) ) ) prefix ( ( 𝐿 − 𝐵 ) + 1 ) ) ) |
21 |
|
elfzel2 |
⊢ ( 𝐵 ∈ ( 0 ... 𝐿 ) → 𝐿 ∈ ℤ ) |
22 |
21
|
3ad2ant2 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → 𝐿 ∈ ℤ ) |
23 |
22
|
zcnd |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → 𝐿 ∈ ℂ ) |
24 |
|
1cnd |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → 1 ∈ ℂ ) |
25 |
|
elfzelz |
⊢ ( 𝐵 ∈ ( 0 ... 𝐿 ) → 𝐵 ∈ ℤ ) |
26 |
25
|
3ad2ant2 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → 𝐵 ∈ ℤ ) |
27 |
26
|
zcnd |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → 𝐵 ∈ ℂ ) |
28 |
23 24 27
|
addsubd |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐿 + 1 ) − 𝐵 ) = ( ( 𝐿 − 𝐵 ) + 1 ) ) |
29 |
28
|
oveq2d |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( reverse ‘ ( 𝑃 prefix ( 𝐿 + 1 ) ) ) prefix ( ( 𝐿 + 1 ) − 𝐵 ) ) = ( ( reverse ‘ ( 𝑃 prefix ( 𝐿 + 1 ) ) ) prefix ( ( 𝐿 − 𝐵 ) + 1 ) ) ) |
30 |
20 29
|
breqtrrd |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( reverse ‘ ( 𝐹 prefix 𝐿 ) ) prefix ( 𝐿 − 𝐵 ) ) ( Walks ‘ 𝐺 ) ( ( reverse ‘ ( 𝑃 prefix ( 𝐿 + 1 ) ) ) prefix ( ( 𝐿 + 1 ) − 𝐵 ) ) ) |
31 |
|
revwlk |
⊢ ( ( ( reverse ‘ ( 𝐹 prefix 𝐿 ) ) prefix ( 𝐿 − 𝐵 ) ) ( Walks ‘ 𝐺 ) ( ( reverse ‘ ( 𝑃 prefix ( 𝐿 + 1 ) ) ) prefix ( ( 𝐿 + 1 ) − 𝐵 ) ) → ( reverse ‘ ( ( reverse ‘ ( 𝐹 prefix 𝐿 ) ) prefix ( 𝐿 − 𝐵 ) ) ) ( Walks ‘ 𝐺 ) ( reverse ‘ ( ( reverse ‘ ( 𝑃 prefix ( 𝐿 + 1 ) ) ) prefix ( ( 𝐿 + 1 ) − 𝐵 ) ) ) ) |
32 |
30 31
|
syl |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( reverse ‘ ( ( reverse ‘ ( 𝐹 prefix 𝐿 ) ) prefix ( 𝐿 − 𝐵 ) ) ) ( Walks ‘ 𝐺 ) ( reverse ‘ ( ( reverse ‘ ( 𝑃 prefix ( 𝐿 + 1 ) ) ) prefix ( ( 𝐿 + 1 ) − 𝐵 ) ) ) ) |
33 |
|
swrdrevpfx |
⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 substr 〈 𝐵 , 𝐿 〉 ) = ( reverse ‘ ( ( reverse ‘ ( 𝐹 prefix 𝐿 ) ) prefix ( 𝐿 − 𝐵 ) ) ) ) |
34 |
8 33
|
syl3an1 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 substr 〈 𝐵 , 𝐿 〉 ) = ( reverse ‘ ( ( reverse ‘ ( 𝐹 prefix 𝐿 ) ) prefix ( 𝐿 − 𝐵 ) ) ) ) |
35 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
36 |
35
|
wlkpwrd |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) |
37 |
36
|
3ad2ant1 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) |
38 |
|
fzelp1 |
⊢ ( 𝐵 ∈ ( 0 ... 𝐿 ) → 𝐵 ∈ ( 0 ... ( 𝐿 + 1 ) ) ) |
39 |
38
|
3ad2ant2 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → 𝐵 ∈ ( 0 ... ( 𝐿 + 1 ) ) ) |
40 |
|
fzp1elp1 |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 𝐿 + 1 ) ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
41 |
40
|
3ad2ant3 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐿 + 1 ) ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
42 |
|
wlklenvp1 |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
43 |
42
|
3ad2ant1 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
44 |
43
|
oveq2d |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 0 ... ( ♯ ‘ 𝑃 ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
45 |
41 44
|
eleqtrrd |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐿 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑃 ) ) ) |
46 |
|
swrdrevpfx |
⊢ ( ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( 0 ... ( 𝐿 + 1 ) ) ∧ ( 𝐿 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑃 ) ) ) → ( 𝑃 substr 〈 𝐵 , ( 𝐿 + 1 ) 〉 ) = ( reverse ‘ ( ( reverse ‘ ( 𝑃 prefix ( 𝐿 + 1 ) ) ) prefix ( ( 𝐿 + 1 ) − 𝐵 ) ) ) ) |
47 |
37 39 45 46
|
syl3anc |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 substr 〈 𝐵 , ( 𝐿 + 1 ) 〉 ) = ( reverse ‘ ( ( reverse ‘ ( 𝑃 prefix ( 𝐿 + 1 ) ) ) prefix ( ( 𝐿 + 1 ) − 𝐵 ) ) ) ) |
48 |
32 34 47
|
3brtr4d |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐵 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 substr 〈 𝐵 , 𝐿 〉 ) ( Walks ‘ 𝐺 ) ( 𝑃 substr 〈 𝐵 , ( 𝐿 + 1 ) 〉 ) ) |