Metamath Proof Explorer


Theorem pfxwlk

Description: A prefix of a walk is a walk. (Contributed by BTernaryTau, 2-Dec-2023)

Ref Expression
Assertion pfxwlk ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝐿 ) ( Walks ‘ 𝐺 ) ( 𝑃 prefix ( 𝐿 + 1 ) ) )

Proof

Step Hyp Ref Expression
1 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
2 1 wlkf ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) )
3 2 adantr ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) )
4 pfxcl ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( 𝐹 prefix 𝐿 ) ∈ Word dom ( iEdg ‘ 𝐺 ) )
5 3 4 syl ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝐿 ) ∈ Word dom ( iEdg ‘ 𝐺 ) )
6 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
7 6 wlkp ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )
8 7 adantr ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )
9 elfzuz3 ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ𝐿 ) )
10 fzss2 ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ𝐿 ) → ( 0 ... 𝐿 ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) )
11 9 10 syl ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 0 ... 𝐿 ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) )
12 11 adantl ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 0 ... 𝐿 ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) )
13 8 12 fssresd ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ↾ ( 0 ... 𝐿 ) ) : ( 0 ... 𝐿 ) ⟶ ( Vtx ‘ 𝐺 ) )
14 pfxlen ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) = 𝐿 )
15 2 14 sylan ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) = 𝐿 )
16 15 oveq2d ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 0 ... ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) = ( 0 ... 𝐿 ) )
17 16 feq2d ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑃 ↾ ( 0 ... 𝐿 ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ↔ ( 𝑃 ↾ ( 0 ... 𝐿 ) ) : ( 0 ... 𝐿 ) ⟶ ( Vtx ‘ 𝐺 ) ) )
18 13 17 mpbird ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ↾ ( 0 ... 𝐿 ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) )
19 6 wlkpwrd ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝑃 ∈ Word ( Vtx ‘ 𝐺 ) )
20 fzp1elp1 ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 𝐿 + 1 ) ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) + 1 ) ) )
21 20 adantl ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐿 + 1 ) ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) + 1 ) ) )
22 wlklenvp1 ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) )
23 22 oveq2d ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 0 ... ( ♯ ‘ 𝑃 ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) + 1 ) ) )
24 23 adantr ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 0 ... ( ♯ ‘ 𝑃 ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) + 1 ) ) )
25 21 24 eleqtrrd ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐿 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑃 ) ) )
26 pfxres ( ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝐿 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑃 ) ) ) → ( 𝑃 prefix ( 𝐿 + 1 ) ) = ( 𝑃 ↾ ( 0 ..^ ( 𝐿 + 1 ) ) ) )
27 19 25 26 syl2an2r ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 prefix ( 𝐿 + 1 ) ) = ( 𝑃 ↾ ( 0 ..^ ( 𝐿 + 1 ) ) ) )
28 elfzelz ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → 𝐿 ∈ ℤ )
29 fzval3 ( 𝐿 ∈ ℤ → ( 0 ... 𝐿 ) = ( 0 ..^ ( 𝐿 + 1 ) ) )
30 28 29 syl ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 0 ... 𝐿 ) = ( 0 ..^ ( 𝐿 + 1 ) ) )
31 30 adantl ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 0 ... 𝐿 ) = ( 0 ..^ ( 𝐿 + 1 ) ) )
32 31 reseq2d ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ↾ ( 0 ... 𝐿 ) ) = ( 𝑃 ↾ ( 0 ..^ ( 𝐿 + 1 ) ) ) )
33 27 32 eqtr4d ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 prefix ( 𝐿 + 1 ) ) = ( 𝑃 ↾ ( 0 ... 𝐿 ) ) )
34 33 feq1d ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑃 prefix ( 𝐿 + 1 ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ↔ ( 𝑃 ↾ ( 0 ... 𝐿 ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) )
35 18 34 mpbird ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 prefix ( 𝐿 + 1 ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) )
36 6 1 wlkprop ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) = { ( 𝑃𝑥 ) } , { ( 𝑃𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) ) ) )
37 36 simp3d ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) = { ( 𝑃𝑥 ) } , { ( 𝑃𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) ) )
38 37 adantr ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) = { ( 𝑃𝑥 ) } , { ( 𝑃𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) ) )
39 38 adantr ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) = { ( 𝑃𝑥 ) } , { ( 𝑃𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) ) )
40 15 oveq2d ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) = ( 0 ..^ 𝐿 ) )
41 40 eleq2d ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ↔ 𝑘 ∈ ( 0 ..^ 𝐿 ) ) )
42 33 fveq1d ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ... 𝐿 ) ) ‘ 𝑘 ) )
43 42 adantr ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ... 𝐿 ) ) ‘ 𝑘 ) )
44 fzossfz ( 0 ..^ 𝐿 ) ⊆ ( 0 ... 𝐿 )
45 44 a1i ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 0 ..^ 𝐿 ) ⊆ ( 0 ... 𝐿 ) )
46 45 sselda ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝐿 ) ) → 𝑘 ∈ ( 0 ... 𝐿 ) )
47 46 fvresd ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝑃 ↾ ( 0 ... 𝐿 ) ) ‘ 𝑘 ) = ( 𝑃𝑘 ) )
48 43 47 eqtr2d ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝐿 ) ) → ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) )
49 33 fveq1d ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 ↾ ( 0 ... 𝐿 ) ) ‘ ( 𝑘 + 1 ) ) )
50 49 adantr ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 ↾ ( 0 ... 𝐿 ) ) ‘ ( 𝑘 + 1 ) ) )
51 fzofzp1 ( 𝑘 ∈ ( 0 ..^ 𝐿 ) → ( 𝑘 + 1 ) ∈ ( 0 ... 𝐿 ) )
52 51 adantl ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝐿 ) ) → ( 𝑘 + 1 ) ∈ ( 0 ... 𝐿 ) )
53 52 fvresd ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝑃 ↾ ( 0 ... 𝐿 ) ) ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) )
54 50 53 eqtr2d ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝐿 ) ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) )
55 48 54 jca ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) )
56 55 ex ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑘 ∈ ( 0 ..^ 𝐿 ) → ( ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) ) )
57 41 56 sylbid ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) → ( ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) ) )
58 57 imp ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ) → ( ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) )
59 3 ancli ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) )
60 simpr ( ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝐿 ) ) → 𝑘 ∈ ( 0 ..^ 𝐿 ) )
61 60 fvresd ( ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝐹 ↾ ( 0 ..^ 𝐿 ) ) ‘ 𝑘 ) = ( 𝐹𝑘 ) )
62 61 fveq2d ( ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝐿 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝐿 ) ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) )
63 59 62 sylan ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝐿 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝐿 ) ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) )
64 63 eqcomd ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝐿 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝐿 ) ) ‘ 𝑘 ) ) )
65 64 ex ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑘 ∈ ( 0 ..^ 𝐿 ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝐿 ) ) ‘ 𝑘 ) ) ) )
66 41 65 sylbid ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝐿 ) ) ‘ 𝑘 ) ) ) )
67 66 imp ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝐿 ) ) ‘ 𝑘 ) ) )
68 simplr ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) )
69 pfxres ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝐿 ) = ( 𝐹 ↾ ( 0 ..^ 𝐿 ) ) )
70 3 68 69 syl2an2r ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ) → ( 𝐹 prefix 𝐿 ) = ( 𝐹 ↾ ( 0 ..^ 𝐿 ) ) )
71 70 fveq1d ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ) → ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) = ( ( 𝐹 ↾ ( 0 ..^ 𝐿 ) ) ‘ 𝑘 ) )
72 71 fveq2d ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝐿 ) ) ‘ 𝑘 ) ) )
73 67 72 eqtr4d ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) )
74 58 73 jca ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ) → ( ( ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) ) )
75 9 adantl ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ𝐿 ) )
76 15 fveq2d ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ℤ ‘ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) = ( ℤ𝐿 ) )
77 75 76 eleqtrrd ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ ‘ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) )
78 fzoss2 ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ ‘ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) → ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )
79 77 78 syl ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )
80 79 sselda ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ) → 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )
81 wkslem1 ( 𝑥 = 𝑘 → ( if- ( ( 𝑃𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) = { ( 𝑃𝑥 ) } , { ( 𝑃𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) ) ↔ if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) ) ) )
82 81 rspcv ( 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) = { ( 𝑃𝑥 ) } , { ( 𝑃𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) ) → if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) ) ) )
83 80 82 syl ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) = { ( 𝑃𝑥 ) } , { ( 𝑃𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) ) → if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) ) ) )
84 eqeq12 ( ( ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) → ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ↔ ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) )
85 84 adantr ( ( ( ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) ) → ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ↔ ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) )
86 simpr ( ( ( ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) )
87 sneq ( ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) → { ( 𝑃𝑘 ) } = { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) } )
88 87 adantr ( ( ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) → { ( 𝑃𝑘 ) } = { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) } )
89 88 adantr ( ( ( ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) ) → { ( 𝑃𝑘 ) } = { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) } )
90 86 89 eqeq12d ( ( ( ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) = { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) } ) )
91 preq12 ( ( ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) → { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) , ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) } )
92 91 adantr ( ( ( ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) ) → { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) , ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) } )
93 92 86 sseq12d ( ( ( ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) ) → ( { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) ↔ { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) , ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) ) )
94 85 90 93 ifpbi123d ( ( ( ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) ) → ( if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) ) ↔ if- ( ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) = { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) } , { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) , ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) ) ) )
95 94 biimpd ( ( ( ( 𝑃𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) ) → ( if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑘 ) ) ) → if- ( ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) = { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) } , { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) , ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) ) ) )
96 74 83 95 sylsyld ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) = { ( 𝑃𝑥 ) } , { ( 𝑃𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹𝑥 ) ) ) → if- ( ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) = { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) } , { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) , ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) ) ) )
97 39 96 mpd ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ) → if- ( ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) = { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) } , { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) , ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) ) )
98 97 ralrimiva ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) if- ( ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) = { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) } , { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) , ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) ) )
99 wlkv ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) )
100 99 simp1d ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐺 ∈ V )
101 100 adantr ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → 𝐺 ∈ V )
102 6 1 iswlkg ( 𝐺 ∈ V → ( ( 𝐹 prefix 𝐿 ) ( Walks ‘ 𝐺 ) ( 𝑃 prefix ( 𝐿 + 1 ) ) ↔ ( ( 𝐹 prefix 𝐿 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 𝑃 prefix ( 𝐿 + 1 ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) if- ( ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) = { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) } , { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) , ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) ) ) ) )
103 101 102 syl ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 prefix 𝐿 ) ( Walks ‘ 𝐺 ) ( 𝑃 prefix ( 𝐿 + 1 ) ) ↔ ( ( 𝐹 prefix 𝐿 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 𝑃 prefix ( 𝐿 + 1 ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 prefix 𝐿 ) ) ) if- ( ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) = ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) = { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) } , { ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ 𝑘 ) , ( ( 𝑃 prefix ( 𝐿 + 1 ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 prefix 𝐿 ) ‘ 𝑘 ) ) ) ) ) )
104 5 35 98 103 mpbir3and ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐿 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝐿 ) ( Walks ‘ 𝐺 ) ( 𝑃 prefix ( 𝐿 + 1 ) ) )