Step |
Hyp |
Ref |
Expression |
1 |
|
cusgredgex2.1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
cusgredgex2.2 |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ↔ ( 𝐵 ∈ 𝑉 ∧ 𝐵 ≠ 𝐴 ) ) |
4 |
|
necom |
⊢ ( 𝐵 ≠ 𝐴 ↔ 𝐴 ≠ 𝐵 ) |
5 |
4
|
anbi2i |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐵 ≠ 𝐴 ) ↔ ( 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) ) |
6 |
3 5
|
sylbbr |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) |
7 |
6
|
anim2i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) |
8 |
7
|
3impb |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) |
9 |
1 2
|
cusgredgex |
⊢ ( 𝐺 ∈ ComplUSGraph → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) → { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
10 |
8 9
|
syl5 |
⊢ ( 𝐺 ∈ ComplUSGraph → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |