Metamath Proof Explorer


Theorem cusgredgex2

Description: Any two distinct vertices in a complete simple graph are connected to each other by an edge. (Contributed by BTernaryTau, 4-Oct-2023)

Ref Expression
Hypotheses cusgredgex2.1 𝑉 = ( Vtx ‘ 𝐺 )
cusgredgex2.2 𝐸 = ( Edg ‘ 𝐺 )
Assertion cusgredgex2 ( 𝐺 ∈ ComplUSGraph → ( ( 𝐴𝑉𝐵𝑉𝐴𝐵 ) → { 𝐴 , 𝐵 } ∈ 𝐸 ) )

Proof

Step Hyp Ref Expression
1 cusgredgex2.1 𝑉 = ( Vtx ‘ 𝐺 )
2 cusgredgex2.2 𝐸 = ( Edg ‘ 𝐺 )
3 eldifsn ( 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ↔ ( 𝐵𝑉𝐵𝐴 ) )
4 necom ( 𝐵𝐴𝐴𝐵 )
5 4 anbi2i ( ( 𝐵𝑉𝐵𝐴 ) ↔ ( 𝐵𝑉𝐴𝐵 ) )
6 3 5 sylbbr ( ( 𝐵𝑉𝐴𝐵 ) → 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) )
7 6 anim2i ( ( 𝐴𝑉 ∧ ( 𝐵𝑉𝐴𝐵 ) ) → ( 𝐴𝑉𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) )
8 7 3impb ( ( 𝐴𝑉𝐵𝑉𝐴𝐵 ) → ( 𝐴𝑉𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) )
9 1 2 cusgredgex ( 𝐺 ∈ ComplUSGraph → ( ( 𝐴𝑉𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) → { 𝐴 , 𝐵 } ∈ 𝐸 ) )
10 8 9 syl5 ( 𝐺 ∈ ComplUSGraph → ( ( 𝐴𝑉𝐵𝑉𝐴𝐵 ) → { 𝐴 , 𝐵 } ∈ 𝐸 ) )