Metamath Proof Explorer


Theorem cusgredgex2

Description: Any two distinct vertices in a complete simple graph are connected to each other by an edge. (Contributed by BTernaryTau, 4-Oct-2023)

Ref Expression
Hypotheses cusgredgex2.1 V = Vtx G
cusgredgex2.2 E = Edg G
Assertion cusgredgex2 G ComplUSGraph A V B V A B A B E

Proof

Step Hyp Ref Expression
1 cusgredgex2.1 V = Vtx G
2 cusgredgex2.2 E = Edg G
3 eldifsn B V A B V B A
4 necom B A A B
5 4 anbi2i B V B A B V A B
6 3 5 sylbbr B V A B B V A
7 6 anim2i A V B V A B A V B V A
8 7 3impb A V B V A B A V B V A
9 1 2 cusgredgex G ComplUSGraph A V B V A A B E
10 8 9 syl5 G ComplUSGraph A V B V A B A B E