Metamath Proof Explorer


Theorem cusgredgex

Description: Any two (distinct) vertices in a complete simple graph are connected to each other by an edge. (Contributed by BTernaryTau, 3-Oct-2023)

Ref Expression
Hypotheses cusgredgex.1 V = Vtx G
cusgredgex.2 E = Edg G
Assertion cusgredgex G ComplUSGraph A V B V A A B E

Proof

Step Hyp Ref Expression
1 cusgredgex.1 V = Vtx G
2 cusgredgex.2 E = Edg G
3 cusgrcplgr G ComplUSGraph G ComplGraph
4 1 2 cplgredgex G ComplGraph A V B V A e E A B e
5 3 4 syl G ComplUSGraph A V B V A e E A B e
6 5 imp G ComplUSGraph A V B V A e E A B e
7 df-rex e E A B e e e E A B e
8 6 7 sylib G ComplUSGraph A V B V A e e E A B e
9 eldifsni B V A B A
10 9 necomd B V A A B
11 10 adantl A V B V A A B
12 hashprg A V B V A A B A B = 2
13 11 12 mpbid A V B V A A B = 2
14 13 adantl G ComplUSGraph e E A V B V A A B = 2
15 cusgrusgr G ComplUSGraph G USGraph
16 2 usgredgppr G USGraph e E e = 2
17 15 16 sylan G ComplUSGraph e E e = 2
18 17 adantr G ComplUSGraph e E A V B V A e = 2
19 14 18 eqtr4d G ComplUSGraph e E A V B V A A B = e
20 simpl G ComplUSGraph e E A V B V A G ComplUSGraph e E
21 vex e V
22 2nn0 2 0
23 hashvnfin e V 2 0 e = 2 e Fin
24 21 22 23 mp2an e = 2 e Fin
25 17 24 syl G ComplUSGraph e E e Fin
26 fisshasheq e Fin A B e A B = e A B = e
27 25 26 syl3an1 G ComplUSGraph e E A B e A B = e A B = e
28 27 3comr A B = e G ComplUSGraph e E A B e A B = e
29 28 3exp A B = e G ComplUSGraph e E A B e A B = e
30 19 20 29 sylc G ComplUSGraph e E A V B V A A B e A B = e
31 30 3impa G ComplUSGraph e E A V B V A A B e A B = e
32 31 3com23 G ComplUSGraph A V B V A e E A B e A B = e
33 32 3expia G ComplUSGraph A V B V A e E A B e A B = e
34 33 imdistand G ComplUSGraph A V B V A e E A B e e E A B = e
35 34 eximdv G ComplUSGraph A V B V A e e E A B e e e E A B = e
36 8 35 mpd G ComplUSGraph A V B V A e e E A B = e
37 pm3.22 e E A B = e A B = e e E
38 eqcom A B = e e = A B
39 38 anbi1i A B = e e E e = A B e E
40 37 39 sylib e E A B = e e = A B e E
41 40 eximi e e E A B = e e e = A B e E
42 36 41 syl G ComplUSGraph A V B V A e e = A B e E
43 prex A B V
44 eleq1 e = A B e E A B E
45 43 44 ceqsexv e e = A B e E A B E
46 42 45 sylib G ComplUSGraph A V B V A A B E
47 46 ex G ComplUSGraph A V B V A A B E