Step |
Hyp |
Ref |
Expression |
1 |
|
cusgredgex.1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
cusgredgex.2 |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
cusgrcplgr |
⊢ ( 𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph ) |
4 |
1 2
|
cplgredgex |
⊢ ( 𝐺 ∈ ComplGraph → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) → ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) |
5 |
3 4
|
syl |
⊢ ( 𝐺 ∈ ComplUSGraph → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) → ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) |
6 |
5
|
imp |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) → ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) |
7 |
|
df-rex |
⊢ ( ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ↔ ∃ 𝑒 ( 𝑒 ∈ 𝐸 ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) |
8 |
6 7
|
sylib |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) → ∃ 𝑒 ( 𝑒 ∈ 𝐸 ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) |
9 |
|
eldifsni |
⊢ ( 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) → 𝐵 ≠ 𝐴 ) |
10 |
9
|
necomd |
⊢ ( 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) → 𝐴 ≠ 𝐵 ) |
11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) → 𝐴 ≠ 𝐵 ) |
12 |
|
hashprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) → ( 𝐴 ≠ 𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
13 |
11 12
|
mpbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
15 |
|
cusgrusgr |
⊢ ( 𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph ) |
16 |
2
|
usgredgppr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑒 ∈ 𝐸 ) → ( ♯ ‘ 𝑒 ) = 2 ) |
17 |
15 16
|
sylan |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸 ) → ( ♯ ‘ 𝑒 ) = 2 ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) → ( ♯ ‘ 𝑒 ) = 2 ) |
19 |
14 18
|
eqtr4d |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = ( ♯ ‘ 𝑒 ) ) |
20 |
|
simpl |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) → ( 𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸 ) ) |
21 |
|
vex |
⊢ 𝑒 ∈ V |
22 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
23 |
|
hashvnfin |
⊢ ( ( 𝑒 ∈ V ∧ 2 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑒 ) = 2 → 𝑒 ∈ Fin ) ) |
24 |
21 22 23
|
mp2an |
⊢ ( ( ♯ ‘ 𝑒 ) = 2 → 𝑒 ∈ Fin ) |
25 |
17 24
|
syl |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ Fin ) |
26 |
|
fisshasheq |
⊢ ( ( 𝑒 ∈ Fin ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) = ( ♯ ‘ 𝑒 ) ) → { 𝐴 , 𝐵 } = 𝑒 ) |
27 |
25 26
|
syl3an1 |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸 ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) = ( ♯ ‘ 𝑒 ) ) → { 𝐴 , 𝐵 } = 𝑒 ) |
28 |
27
|
3comr |
⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐵 } ) = ( ♯ ‘ 𝑒 ) ∧ ( 𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸 ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) → { 𝐴 , 𝐵 } = 𝑒 ) |
29 |
28
|
3exp |
⊢ ( ( ♯ ‘ { 𝐴 , 𝐵 } ) = ( ♯ ‘ 𝑒 ) → ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸 ) → ( { 𝐴 , 𝐵 } ⊆ 𝑒 → { 𝐴 , 𝐵 } = 𝑒 ) ) ) |
30 |
19 20 29
|
sylc |
⊢ ( ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) → ( { 𝐴 , 𝐵 } ⊆ 𝑒 → { 𝐴 , 𝐵 } = 𝑒 ) ) |
31 |
30
|
3impa |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) → ( { 𝐴 , 𝐵 } ⊆ 𝑒 → { 𝐴 , 𝐵 } = 𝑒 ) ) |
32 |
31
|
3com23 |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ∧ 𝑒 ∈ 𝐸 ) → ( { 𝐴 , 𝐵 } ⊆ 𝑒 → { 𝐴 , 𝐵 } = 𝑒 ) ) |
33 |
32
|
3expia |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) → ( 𝑒 ∈ 𝐸 → ( { 𝐴 , 𝐵 } ⊆ 𝑒 → { 𝐴 , 𝐵 } = 𝑒 ) ) ) |
34 |
33
|
imdistand |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) → ( ( 𝑒 ∈ 𝐸 ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) → ( 𝑒 ∈ 𝐸 ∧ { 𝐴 , 𝐵 } = 𝑒 ) ) ) |
35 |
34
|
eximdv |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) → ( ∃ 𝑒 ( 𝑒 ∈ 𝐸 ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) → ∃ 𝑒 ( 𝑒 ∈ 𝐸 ∧ { 𝐴 , 𝐵 } = 𝑒 ) ) ) |
36 |
8 35
|
mpd |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) → ∃ 𝑒 ( 𝑒 ∈ 𝐸 ∧ { 𝐴 , 𝐵 } = 𝑒 ) ) |
37 |
|
pm3.22 |
⊢ ( ( 𝑒 ∈ 𝐸 ∧ { 𝐴 , 𝐵 } = 𝑒 ) → ( { 𝐴 , 𝐵 } = 𝑒 ∧ 𝑒 ∈ 𝐸 ) ) |
38 |
|
eqcom |
⊢ ( { 𝐴 , 𝐵 } = 𝑒 ↔ 𝑒 = { 𝐴 , 𝐵 } ) |
39 |
38
|
anbi1i |
⊢ ( ( { 𝐴 , 𝐵 } = 𝑒 ∧ 𝑒 ∈ 𝐸 ) ↔ ( 𝑒 = { 𝐴 , 𝐵 } ∧ 𝑒 ∈ 𝐸 ) ) |
40 |
37 39
|
sylib |
⊢ ( ( 𝑒 ∈ 𝐸 ∧ { 𝐴 , 𝐵 } = 𝑒 ) → ( 𝑒 = { 𝐴 , 𝐵 } ∧ 𝑒 ∈ 𝐸 ) ) |
41 |
40
|
eximi |
⊢ ( ∃ 𝑒 ( 𝑒 ∈ 𝐸 ∧ { 𝐴 , 𝐵 } = 𝑒 ) → ∃ 𝑒 ( 𝑒 = { 𝐴 , 𝐵 } ∧ 𝑒 ∈ 𝐸 ) ) |
42 |
36 41
|
syl |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) → ∃ 𝑒 ( 𝑒 = { 𝐴 , 𝐵 } ∧ 𝑒 ∈ 𝐸 ) ) |
43 |
|
prex |
⊢ { 𝐴 , 𝐵 } ∈ V |
44 |
|
eleq1 |
⊢ ( 𝑒 = { 𝐴 , 𝐵 } → ( 𝑒 ∈ 𝐸 ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
45 |
43 44
|
ceqsexv |
⊢ ( ∃ 𝑒 ( 𝑒 = { 𝐴 , 𝐵 } ∧ 𝑒 ∈ 𝐸 ) ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) |
46 |
42 45
|
sylib |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) → { 𝐴 , 𝐵 } ∈ 𝐸 ) |
47 |
46
|
ex |
⊢ ( 𝐺 ∈ ComplUSGraph → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝑉 ∖ { 𝐴 } ) ) → { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |