Metamath Proof Explorer


Theorem cplgredgex

Description: Any two (distinct) vertices in a complete graph are connected to each other by at least one edge. (Contributed by BTernaryTau, 2-Oct-2023)

Ref Expression
Hypotheses cplgredgex.1 V=VtxG
cplgredgex.2 E=EdgG
Assertion cplgredgex GComplGraphAVBVAeEABe

Proof

Step Hyp Ref Expression
1 cplgredgex.1 V=VtxG
2 cplgredgex.2 E=EdgG
3 simp2 GComplGraphAVBVAAV
4 simp3 GComplGraphAVBVABVA
5 eleq1 a=AaVAV
6 sneq a=Aa=A
7 6 difeq2d a=AVa=VA
8 7 eleq2d a=AbVabVA
9 5 8 anbi12d a=AaVbVaAVbVA
10 preq1 a=Aab=Ab
11 10 sseq1d a=AabeAbe
12 11 rexbidv a=AeEabeeEAbe
13 9 12 imbi12d a=AaVbVaeEabeAVbVAeEAbe
14 eleq1 b=BbVABVA
15 14 anbi2d b=BAVbVAAVBVA
16 preq2 b=BAb=AB
17 16 sseq1d b=BAbeABe
18 17 rexbidv b=BeEAbeeEABe
19 15 18 imbi12d b=BAVbVAeEAbeAVBVAeEABe
20 13 19 sylan9bb a=Ab=BaVbVaeEabeAVBVAeEABe
21 1 2 iscplgredg GComplGraphGComplGraphaVbVaeEabe
22 21 ibi GComplGraphaVbVaeEabe
23 rsp2 aVbVaeEabeaVbVaeEabe
24 22 23 syl GComplGraphaVbVaeEabe
25 24 3ad2ant1 GComplGraphAVBVAaVbVaeEabe
26 3 4 20 25 vtocl2d GComplGraphAVBVAAVBVAeEABe
27 3 4 26 mp2and GComplGraphAVBVAeEABe
28 27 3expib GComplGraphAVBVAeEABe