Metamath Proof Explorer


Theorem cplgredgex

Description: Any two (distinct) vertices in a complete graph are connected to each other by at least one edge. (Contributed by BTernaryTau, 2-Oct-2023)

Ref Expression
Hypotheses cplgredgex.1 V = Vtx G
cplgredgex.2 E = Edg G
Assertion cplgredgex G ComplGraph A V B V A e E A B e

Proof

Step Hyp Ref Expression
1 cplgredgex.1 V = Vtx G
2 cplgredgex.2 E = Edg G
3 simp2 G ComplGraph A V B V A A V
4 simp3 G ComplGraph A V B V A B V A
5 eleq1 a = A a V A V
6 sneq a = A a = A
7 6 difeq2d a = A V a = V A
8 7 eleq2d a = A b V a b V A
9 5 8 anbi12d a = A a V b V a A V b V A
10 preq1 a = A a b = A b
11 10 sseq1d a = A a b e A b e
12 11 rexbidv a = A e E a b e e E A b e
13 9 12 imbi12d a = A a V b V a e E a b e A V b V A e E A b e
14 eleq1 b = B b V A B V A
15 14 anbi2d b = B A V b V A A V B V A
16 preq2 b = B A b = A B
17 16 sseq1d b = B A b e A B e
18 17 rexbidv b = B e E A b e e E A B e
19 15 18 imbi12d b = B A V b V A e E A b e A V B V A e E A B e
20 13 19 sylan9bb a = A b = B a V b V a e E a b e A V B V A e E A B e
21 1 2 iscplgredg G ComplGraph G ComplGraph a V b V a e E a b e
22 21 ibi G ComplGraph a V b V a e E a b e
23 rsp2 a V b V a e E a b e a V b V a e E a b e
24 22 23 syl G ComplGraph a V b V a e E a b e
25 24 3ad2ant1 G ComplGraph A V B V A a V b V a e E a b e
26 3 4 20 25 vtocl2d G ComplGraph A V B V A A V B V A e E A B e
27 3 4 26 mp2and G ComplGraph A V B V A e E A B e
28 27 3expib G ComplGraph A V B V A e E A B e