Metamath Proof Explorer


Theorem iscplgredg

Description: A graph G is complete iff all vertices are connected with each other by (at least) one edge. (Contributed by AV, 10-Nov-2020)

Ref Expression
Hypotheses cplgruvtxb.v V=VtxG
iscplgredg.v E=EdgG
Assertion iscplgredg GWGComplGraphvVnVveEvne

Proof

Step Hyp Ref Expression
1 cplgruvtxb.v V=VtxG
2 iscplgredg.v E=EdgG
3 1 iscplgrnb GWGComplGraphvVnVvnGNeighbVtxv
4 df-3an nVvVnveEvnenVvVnveEvne
5 4 a1i GWvVnVvnVvVnveEvnenVvVnveEvne
6 1 2 nbgrel nGNeighbVtxvnVvVnveEvne
7 6 a1i GWvVnVvnGNeighbVtxvnVvVnveEvne
8 eldifsn nVvnVnv
9 simpr GWvVvV
10 simpl nVnvnV
11 9 10 anim12ci GWvVnVnvnVvV
12 simprr GWvVnVnvnv
13 11 12 jca GWvVnVnvnVvVnv
14 8 13 sylan2b GWvVnVvnVvVnv
15 14 biantrurd GWvVnVveEvnenVvVnveEvne
16 5 7 15 3bitr4d GWvVnVvnGNeighbVtxveEvne
17 16 ralbidva GWvVnVvnGNeighbVtxvnVveEvne
18 17 ralbidva GWvVnVvnGNeighbVtxvvVnVveEvne
19 3 18 bitrd GWGComplGraphvVnVveEvne