Metamath Proof Explorer


Theorem iscplgredg

Description: A graph G is complete iff all vertices are connected with each other by (at least) one edge. (Contributed by AV, 10-Nov-2020)

Ref Expression
Hypotheses cplgruvtxb.v V = Vtx G
iscplgredg.v E = Edg G
Assertion iscplgredg G W G ComplGraph v V n V v e E v n e

Proof

Step Hyp Ref Expression
1 cplgruvtxb.v V = Vtx G
2 iscplgredg.v E = Edg G
3 1 iscplgrnb G W G ComplGraph v V n V v n G NeighbVtx v
4 df-3an n V v V n v e E v n e n V v V n v e E v n e
5 4 a1i G W v V n V v n V v V n v e E v n e n V v V n v e E v n e
6 1 2 nbgrel n G NeighbVtx v n V v V n v e E v n e
7 6 a1i G W v V n V v n G NeighbVtx v n V v V n v e E v n e
8 eldifsn n V v n V n v
9 simpr G W v V v V
10 simpl n V n v n V
11 9 10 anim12ci G W v V n V n v n V v V
12 simprr G W v V n V n v n v
13 11 12 jca G W v V n V n v n V v V n v
14 8 13 sylan2b G W v V n V v n V v V n v
15 14 biantrurd G W v V n V v e E v n e n V v V n v e E v n e
16 5 7 15 3bitr4d G W v V n V v n G NeighbVtx v e E v n e
17 16 ralbidva G W v V n V v n G NeighbVtx v n V v e E v n e
18 17 ralbidva G W v V n V v n G NeighbVtx v v V n V v e E v n e
19 3 18 bitrd G W G ComplGraph v V n V v e E v n e