Metamath Proof Explorer


Theorem vtocl2d

Description: Implicit substitution of two classes for two setvar variables. (Contributed by Thierry Arnoux, 25-Aug-2020) (Revised by BTernaryTau, 19-Oct-2023)

Ref Expression
Hypotheses vtocl2d.a φAV
vtocl2d.b φBW
vtocl2d.1 x=Ay=Bψχ
vtocl2d.3 φψ
Assertion vtocl2d φχ

Proof

Step Hyp Ref Expression
1 vtocl2d.a φAV
2 vtocl2d.b φBW
3 vtocl2d.1 x=Ay=Bψχ
4 vtocl2d.3 φψ
5 4 adantr φy=Bψ
6 3 adantll φx=Ay=Bψχ
7 6 pm5.74da φx=Ay=Bψy=Bχ
8 4 a1d φy=Bψ
9 1 7 8 vtocld φy=Bχ
10 9 imp φy=Bχ
11 5 10 2thd φy=Bψχ
12 2 11 4 vtocld φχ