Metamath Proof Explorer


Theorem cvrp

Description: A Hilbert lattice satisfies the covering property of Definition 7.4 of MaedaMaeda p. 31 and its converse. ( cvp analog.) (Contributed by NM, 18-Nov-2011)

Ref Expression
Hypotheses cvrp.b
|- B = ( Base ` K )
cvrp.j
|- .\/ = ( join ` K )
cvrp.m
|- ./\ = ( meet ` K )
cvrp.z
|- .0. = ( 0. ` K )
cvrp.c
|- C = ( 
cvrp.a
|- A = ( Atoms ` K )
Assertion cvrp
|- ( ( K e. HL /\ X e. B /\ P e. A ) -> ( ( X ./\ P ) = .0. <-> X C ( X .\/ P ) ) )

Proof

Step Hyp Ref Expression
1 cvrp.b
 |-  B = ( Base ` K )
2 cvrp.j
 |-  .\/ = ( join ` K )
3 cvrp.m
 |-  ./\ = ( meet ` K )
4 cvrp.z
 |-  .0. = ( 0. ` K )
5 cvrp.c
 |-  C = ( 
6 cvrp.a
 |-  A = ( Atoms ` K )
7 hlomcmcv
 |-  ( K e. HL -> ( K e. OML /\ K e. CLat /\ K e. CvLat ) )
8 1 2 3 4 5 6 cvlcvrp
 |-  ( ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ X e. B /\ P e. A ) -> ( ( X ./\ P ) = .0. <-> X C ( X .\/ P ) ) )
9 7 8 syl3an1
 |-  ( ( K e. HL /\ X e. B /\ P e. A ) -> ( ( X ./\ P ) = .0. <-> X C ( X .\/ P ) ) )