| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrresb.g |
|- G = ( DChr ` N ) |
| 2 |
|
dchrresb.z |
|- Z = ( Z/nZ ` N ) |
| 3 |
|
dchrresb.b |
|- D = ( Base ` G ) |
| 4 |
|
dchrresb.u |
|- U = ( Unit ` Z ) |
| 5 |
|
dchrresb.x |
|- ( ph -> X e. D ) |
| 6 |
|
dchrresb.Y |
|- ( ph -> Y e. D ) |
| 7 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
| 8 |
1 2 3 7 5
|
dchrf |
|- ( ph -> X : ( Base ` Z ) --> CC ) |
| 9 |
8
|
ffnd |
|- ( ph -> X Fn ( Base ` Z ) ) |
| 10 |
1 2 3 7 6
|
dchrf |
|- ( ph -> Y : ( Base ` Z ) --> CC ) |
| 11 |
10
|
ffnd |
|- ( ph -> Y Fn ( Base ` Z ) ) |
| 12 |
7 4
|
unitss |
|- U C_ ( Base ` Z ) |
| 13 |
|
fvreseq |
|- ( ( ( X Fn ( Base ` Z ) /\ Y Fn ( Base ` Z ) ) /\ U C_ ( Base ` Z ) ) -> ( ( X |` U ) = ( Y |` U ) <-> A. k e. U ( X ` k ) = ( Y ` k ) ) ) |
| 14 |
12 13
|
mpan2 |
|- ( ( X Fn ( Base ` Z ) /\ Y Fn ( Base ` Z ) ) -> ( ( X |` U ) = ( Y |` U ) <-> A. k e. U ( X ` k ) = ( Y ` k ) ) ) |
| 15 |
9 11 14
|
syl2anc |
|- ( ph -> ( ( X |` U ) = ( Y |` U ) <-> A. k e. U ( X ` k ) = ( Y ` k ) ) ) |
| 16 |
1 2 3 4 5 6
|
dchreq |
|- ( ph -> ( X = Y <-> A. k e. U ( X ` k ) = ( Y ` k ) ) ) |
| 17 |
15 16
|
bitr4d |
|- ( ph -> ( ( X |` U ) = ( Y |` U ) <-> X = Y ) ) |