| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dec5nprm.1 |
|- A e. NN |
| 2 |
|
dec2nprm.2 |
|- B e. NN0 |
| 3 |
|
dec2nprm.3 |
|- ( B x. 2 ) = C |
| 4 |
|
5nn |
|- 5 e. NN |
| 5 |
4 1
|
nnmulcli |
|- ( 5 x. A ) e. NN |
| 6 |
|
nnnn0addcl |
|- ( ( ( 5 x. A ) e. NN /\ B e. NN0 ) -> ( ( 5 x. A ) + B ) e. NN ) |
| 7 |
5 2 6
|
mp2an |
|- ( ( 5 x. A ) + B ) e. NN |
| 8 |
|
2nn |
|- 2 e. NN |
| 9 |
|
1nn0 |
|- 1 e. NN0 |
| 10 |
|
1lt5 |
|- 1 < 5 |
| 11 |
4 1 2 9 10
|
numlti |
|- 1 < ( ( 5 x. A ) + B ) |
| 12 |
|
1lt2 |
|- 1 < 2 |
| 13 |
4
|
nncni |
|- 5 e. CC |
| 14 |
1
|
nncni |
|- A e. CC |
| 15 |
|
2cn |
|- 2 e. CC |
| 16 |
13 14 15
|
mul32i |
|- ( ( 5 x. A ) x. 2 ) = ( ( 5 x. 2 ) x. A ) |
| 17 |
|
5t2e10 |
|- ( 5 x. 2 ) = ; 1 0 |
| 18 |
17
|
oveq1i |
|- ( ( 5 x. 2 ) x. A ) = ( ; 1 0 x. A ) |
| 19 |
16 18
|
eqtri |
|- ( ( 5 x. A ) x. 2 ) = ( ; 1 0 x. A ) |
| 20 |
19 3
|
oveq12i |
|- ( ( ( 5 x. A ) x. 2 ) + ( B x. 2 ) ) = ( ( ; 1 0 x. A ) + C ) |
| 21 |
5
|
nncni |
|- ( 5 x. A ) e. CC |
| 22 |
2
|
nn0cni |
|- B e. CC |
| 23 |
21 22 15
|
adddiri |
|- ( ( ( 5 x. A ) + B ) x. 2 ) = ( ( ( 5 x. A ) x. 2 ) + ( B x. 2 ) ) |
| 24 |
|
dfdec10 |
|- ; A C = ( ( ; 1 0 x. A ) + C ) |
| 25 |
20 23 24
|
3eqtr4i |
|- ( ( ( 5 x. A ) + B ) x. 2 ) = ; A C |
| 26 |
7 8 11 12 25
|
nprmi |
|- -. ; A C e. Prime |