| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dec5nprm.1 | ⊢ 𝐴  ∈  ℕ | 
						
							| 2 |  | dec2nprm.2 | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 3 |  | dec2nprm.3 | ⊢ ( 𝐵  ·  2 )  =  𝐶 | 
						
							| 4 |  | 5nn | ⊢ 5  ∈  ℕ | 
						
							| 5 | 4 1 | nnmulcli | ⊢ ( 5  ·  𝐴 )  ∈  ℕ | 
						
							| 6 |  | nnnn0addcl | ⊢ ( ( ( 5  ·  𝐴 )  ∈  ℕ  ∧  𝐵  ∈  ℕ0 )  →  ( ( 5  ·  𝐴 )  +  𝐵 )  ∈  ℕ ) | 
						
							| 7 | 5 2 6 | mp2an | ⊢ ( ( 5  ·  𝐴 )  +  𝐵 )  ∈  ℕ | 
						
							| 8 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 9 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 10 |  | 1lt5 | ⊢ 1  <  5 | 
						
							| 11 | 4 1 2 9 10 | numlti | ⊢ 1  <  ( ( 5  ·  𝐴 )  +  𝐵 ) | 
						
							| 12 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 13 | 4 | nncni | ⊢ 5  ∈  ℂ | 
						
							| 14 | 1 | nncni | ⊢ 𝐴  ∈  ℂ | 
						
							| 15 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 16 | 13 14 15 | mul32i | ⊢ ( ( 5  ·  𝐴 )  ·  2 )  =  ( ( 5  ·  2 )  ·  𝐴 ) | 
						
							| 17 |  | 5t2e10 | ⊢ ( 5  ·  2 )  =  ; 1 0 | 
						
							| 18 | 17 | oveq1i | ⊢ ( ( 5  ·  2 )  ·  𝐴 )  =  ( ; 1 0  ·  𝐴 ) | 
						
							| 19 | 16 18 | eqtri | ⊢ ( ( 5  ·  𝐴 )  ·  2 )  =  ( ; 1 0  ·  𝐴 ) | 
						
							| 20 | 19 3 | oveq12i | ⊢ ( ( ( 5  ·  𝐴 )  ·  2 )  +  ( 𝐵  ·  2 ) )  =  ( ( ; 1 0  ·  𝐴 )  +  𝐶 ) | 
						
							| 21 | 5 | nncni | ⊢ ( 5  ·  𝐴 )  ∈  ℂ | 
						
							| 22 | 2 | nn0cni | ⊢ 𝐵  ∈  ℂ | 
						
							| 23 | 21 22 15 | adddiri | ⊢ ( ( ( 5  ·  𝐴 )  +  𝐵 )  ·  2 )  =  ( ( ( 5  ·  𝐴 )  ·  2 )  +  ( 𝐵  ·  2 ) ) | 
						
							| 24 |  | dfdec10 | ⊢ ; 𝐴 𝐶  =  ( ( ; 1 0  ·  𝐴 )  +  𝐶 ) | 
						
							| 25 | 20 23 24 | 3eqtr4i | ⊢ ( ( ( 5  ·  𝐴 )  +  𝐵 )  ·  2 )  =  ; 𝐴 𝐶 | 
						
							| 26 | 7 8 11 12 25 | nprmi | ⊢ ¬  ; 𝐴 𝐶  ∈  ℙ |