| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dec5nprm.1 |
|- A e. NN |
| 2 |
|
2nn |
|- 2 e. NN |
| 3 |
2 1
|
nnmulcli |
|- ( 2 x. A ) e. NN |
| 4 |
|
peano2nn |
|- ( ( 2 x. A ) e. NN -> ( ( 2 x. A ) + 1 ) e. NN ) |
| 5 |
3 4
|
ax-mp |
|- ( ( 2 x. A ) + 1 ) e. NN |
| 6 |
|
5nn |
|- 5 e. NN |
| 7 |
|
1nn0 |
|- 1 e. NN0 |
| 8 |
|
1lt2 |
|- 1 < 2 |
| 9 |
2 1 7 7 8
|
numlti |
|- 1 < ( ( 2 x. A ) + 1 ) |
| 10 |
|
1lt5 |
|- 1 < 5 |
| 11 |
2
|
nncni |
|- 2 e. CC |
| 12 |
1
|
nncni |
|- A e. CC |
| 13 |
|
5cn |
|- 5 e. CC |
| 14 |
11 12 13
|
mul32i |
|- ( ( 2 x. A ) x. 5 ) = ( ( 2 x. 5 ) x. A ) |
| 15 |
|
5t2e10 |
|- ( 5 x. 2 ) = ; 1 0 |
| 16 |
13 11 15
|
mulcomli |
|- ( 2 x. 5 ) = ; 1 0 |
| 17 |
16
|
oveq1i |
|- ( ( 2 x. 5 ) x. A ) = ( ; 1 0 x. A ) |
| 18 |
14 17
|
eqtri |
|- ( ( 2 x. A ) x. 5 ) = ( ; 1 0 x. A ) |
| 19 |
13
|
mullidi |
|- ( 1 x. 5 ) = 5 |
| 20 |
18 19
|
oveq12i |
|- ( ( ( 2 x. A ) x. 5 ) + ( 1 x. 5 ) ) = ( ( ; 1 0 x. A ) + 5 ) |
| 21 |
3
|
nncni |
|- ( 2 x. A ) e. CC |
| 22 |
|
ax-1cn |
|- 1 e. CC |
| 23 |
21 22 13
|
adddiri |
|- ( ( ( 2 x. A ) + 1 ) x. 5 ) = ( ( ( 2 x. A ) x. 5 ) + ( 1 x. 5 ) ) |
| 24 |
|
dfdec10 |
|- ; A 5 = ( ( ; 1 0 x. A ) + 5 ) |
| 25 |
20 23 24
|
3eqtr4i |
|- ( ( ( 2 x. A ) + 1 ) x. 5 ) = ; A 5 |
| 26 |
5 6 9 10 25
|
nprmi |
|- -. ; A 5 e. Prime |