Description: A decimal number greater than 10 and ending with five is not a prime number. (Contributed by Mario Carneiro, 19-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dec5nprm.1 | ⊢ 𝐴 ∈ ℕ | |
| Assertion | dec5nprm | ⊢ ¬ ; 𝐴 5 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dec5nprm.1 | ⊢ 𝐴 ∈ ℕ | |
| 2 | 2nn | ⊢ 2 ∈ ℕ | |
| 3 | 2 1 | nnmulcli | ⊢ ( 2 · 𝐴 ) ∈ ℕ |
| 4 | peano2nn | ⊢ ( ( 2 · 𝐴 ) ∈ ℕ → ( ( 2 · 𝐴 ) + 1 ) ∈ ℕ ) | |
| 5 | 3 4 | ax-mp | ⊢ ( ( 2 · 𝐴 ) + 1 ) ∈ ℕ |
| 6 | 5nn | ⊢ 5 ∈ ℕ | |
| 7 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 8 | 1lt2 | ⊢ 1 < 2 | |
| 9 | 2 1 7 7 8 | numlti | ⊢ 1 < ( ( 2 · 𝐴 ) + 1 ) |
| 10 | 1lt5 | ⊢ 1 < 5 | |
| 11 | 2 | nncni | ⊢ 2 ∈ ℂ |
| 12 | 1 | nncni | ⊢ 𝐴 ∈ ℂ |
| 13 | 5cn | ⊢ 5 ∈ ℂ | |
| 14 | 11 12 13 | mul32i | ⊢ ( ( 2 · 𝐴 ) · 5 ) = ( ( 2 · 5 ) · 𝐴 ) |
| 15 | 5t2e10 | ⊢ ( 5 · 2 ) = ; 1 0 | |
| 16 | 13 11 15 | mulcomli | ⊢ ( 2 · 5 ) = ; 1 0 |
| 17 | 16 | oveq1i | ⊢ ( ( 2 · 5 ) · 𝐴 ) = ( ; 1 0 · 𝐴 ) |
| 18 | 14 17 | eqtri | ⊢ ( ( 2 · 𝐴 ) · 5 ) = ( ; 1 0 · 𝐴 ) |
| 19 | 13 | mullidi | ⊢ ( 1 · 5 ) = 5 |
| 20 | 18 19 | oveq12i | ⊢ ( ( ( 2 · 𝐴 ) · 5 ) + ( 1 · 5 ) ) = ( ( ; 1 0 · 𝐴 ) + 5 ) |
| 21 | 3 | nncni | ⊢ ( 2 · 𝐴 ) ∈ ℂ |
| 22 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 23 | 21 22 13 | adddiri | ⊢ ( ( ( 2 · 𝐴 ) + 1 ) · 5 ) = ( ( ( 2 · 𝐴 ) · 5 ) + ( 1 · 5 ) ) |
| 24 | dfdec10 | ⊢ ; 𝐴 5 = ( ( ; 1 0 · 𝐴 ) + 5 ) | |
| 25 | 20 23 24 | 3eqtr4i | ⊢ ( ( ( 2 · 𝐴 ) + 1 ) · 5 ) = ; 𝐴 5 |
| 26 | 5 6 9 10 25 | nprmi | ⊢ ¬ ; 𝐴 5 ∈ ℙ |