| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derangfmla.d |  |-  D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) | 
						
							| 2 |  | oveq2 |  |-  ( n = m -> ( 1 ... n ) = ( 1 ... m ) ) | 
						
							| 3 | 2 | fveq2d |  |-  ( n = m -> ( D ` ( 1 ... n ) ) = ( D ` ( 1 ... m ) ) ) | 
						
							| 4 | 3 | cbvmptv |  |-  ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) = ( m e. NN0 |-> ( D ` ( 1 ... m ) ) ) | 
						
							| 5 | 1 4 | derangen2 |  |-  ( A e. Fin -> ( D ` A ) = ( ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) ` ( # ` A ) ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( A e. Fin /\ A =/= (/) ) -> ( D ` A ) = ( ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) ` ( # ` A ) ) ) | 
						
							| 7 |  | hashnncl |  |-  ( A e. Fin -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) | 
						
							| 8 | 7 | biimpar |  |-  ( ( A e. Fin /\ A =/= (/) ) -> ( # ` A ) e. NN ) | 
						
							| 9 | 1 4 | subfacval3 |  |-  ( ( # ` A ) e. NN -> ( ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) ` ( # ` A ) ) = ( |_ ` ( ( ( ! ` ( # ` A ) ) / _e ) + ( 1 / 2 ) ) ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( A e. Fin /\ A =/= (/) ) -> ( ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) ` ( # ` A ) ) = ( |_ ` ( ( ( ! ` ( # ` A ) ) / _e ) + ( 1 / 2 ) ) ) ) | 
						
							| 11 | 6 10 | eqtrd |  |-  ( ( A e. Fin /\ A =/= (/) ) -> ( D ` A ) = ( |_ ` ( ( ( ! ` ( # ` A ) ) / _e ) + ( 1 / 2 ) ) ) ) |