| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derangfmla.d | ⊢ 𝐷  =  ( 𝑥  ∈  Fin  ↦  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : 𝑥 –1-1-onto→ 𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 1 ... 𝑛 )  =  ( 1 ... 𝑚 ) ) | 
						
							| 3 | 2 | fveq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝐷 ‘ ( 1 ... 𝑛 ) )  =  ( 𝐷 ‘ ( 1 ... 𝑚 ) ) ) | 
						
							| 4 | 3 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( 𝐷 ‘ ( 1 ... 𝑛 ) ) )  =  ( 𝑚  ∈  ℕ0  ↦  ( 𝐷 ‘ ( 1 ... 𝑚 ) ) ) | 
						
							| 5 | 1 4 | derangen2 | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐷 ‘ 𝐴 )  =  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ( 𝐷 ‘ 𝐴 )  =  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 7 |  | hashnncl | ⊢ ( 𝐴  ∈  Fin  →  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 8 | 7 | biimpar | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ( ♯ ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 9 | 1 4 | subfacval3 | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) ‘ ( ♯ ‘ 𝐴 ) )  =  ( ⌊ ‘ ( ( ( ! ‘ ( ♯ ‘ 𝐴 ) )  /  e )  +  ( 1  /  2 ) ) ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) ‘ ( ♯ ‘ 𝐴 ) )  =  ( ⌊ ‘ ( ( ( ! ‘ ( ♯ ‘ 𝐴 ) )  /  e )  +  ( 1  /  2 ) ) ) ) | 
						
							| 11 | 6 10 | eqtrd | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ( 𝐷 ‘ 𝐴 )  =  ( ⌊ ‘ ( ( ( ! ‘ ( ♯ ‘ 𝐴 ) )  /  e )  +  ( 1  /  2 ) ) ) ) |