| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derang.d | ⊢ 𝐷  =  ( 𝑥  ∈  Fin  ↦  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : 𝑥 –1-1-onto→ 𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) | 
						
							| 2 |  | subfac.n | ⊢ 𝑆  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) | 
						
							| 3 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 | 1 2 | subfacf | ⊢ 𝑆 : ℕ0 ⟶ ℕ0 | 
						
							| 5 | 4 | ffvelcdmi | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑆 ‘ 𝑁 )  ∈  ℕ0 ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑆 ‘ 𝑁 )  ∈  ℕ0 ) | 
						
							| 7 | 6 | nn0zd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑆 ‘ 𝑁 )  ∈  ℤ ) | 
						
							| 8 | 7 | zred | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑆 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 9 |  | faccl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ! ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 10 | 3 9 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( ! ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 11 | 10 | nnred | ⊢ ( 𝑁  ∈  ℕ  →  ( ! ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 12 |  | epr | ⊢ e  ∈  ℝ+ | 
						
							| 13 |  | rerpdivcl | ⊢ ( ( ( ! ‘ 𝑁 )  ∈  ℝ  ∧  e  ∈  ℝ+ )  →  ( ( ! ‘ 𝑁 )  /  e )  ∈  ℝ ) | 
						
							| 14 | 11 12 13 | sylancl | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ! ‘ 𝑁 )  /  e )  ∈  ℝ ) | 
						
							| 15 |  | halfre | ⊢ ( 1  /  2 )  ∈  ℝ | 
						
							| 16 |  | readdcl | ⊢ ( ( ( ( ! ‘ 𝑁 )  /  e )  ∈  ℝ  ∧  ( 1  /  2 )  ∈  ℝ )  →  ( ( ( ! ‘ 𝑁 )  /  e )  +  ( 1  /  2 ) )  ∈  ℝ ) | 
						
							| 17 | 14 15 16 | sylancl | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ! ‘ 𝑁 )  /  e )  +  ( 1  /  2 ) )  ∈  ℝ ) | 
						
							| 18 |  | elnn1uz2 | ⊢ ( 𝑁  ∈  ℕ  ↔  ( 𝑁  =  1  ∨  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑁  =  1  →  ( ! ‘ 𝑁 )  =  ( ! ‘ 1 ) ) | 
						
							| 20 |  | fac1 | ⊢ ( ! ‘ 1 )  =  1 | 
						
							| 21 | 19 20 | eqtrdi | ⊢ ( 𝑁  =  1  →  ( ! ‘ 𝑁 )  =  1 ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( 𝑁  =  1  →  ( ( ! ‘ 𝑁 )  /  e )  =  ( 1  /  e ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑁  =  1  →  ( 𝑆 ‘ 𝑁 )  =  ( 𝑆 ‘ 1 ) ) | 
						
							| 24 | 1 2 | subfac1 | ⊢ ( 𝑆 ‘ 1 )  =  0 | 
						
							| 25 | 23 24 | eqtrdi | ⊢ ( 𝑁  =  1  →  ( 𝑆 ‘ 𝑁 )  =  0 ) | 
						
							| 26 | 22 25 | oveq12d | ⊢ ( 𝑁  =  1  →  ( ( ( ! ‘ 𝑁 )  /  e )  −  ( 𝑆 ‘ 𝑁 ) )  =  ( ( 1  /  e )  −  0 ) ) | 
						
							| 27 |  | rpreccl | ⊢ ( e  ∈  ℝ+  →  ( 1  /  e )  ∈  ℝ+ ) | 
						
							| 28 | 12 27 | ax-mp | ⊢ ( 1  /  e )  ∈  ℝ+ | 
						
							| 29 |  | rpre | ⊢ ( ( 1  /  e )  ∈  ℝ+  →  ( 1  /  e )  ∈  ℝ ) | 
						
							| 30 | 28 29 | ax-mp | ⊢ ( 1  /  e )  ∈  ℝ | 
						
							| 31 | 30 | recni | ⊢ ( 1  /  e )  ∈  ℂ | 
						
							| 32 | 31 | subid1i | ⊢ ( ( 1  /  e )  −  0 )  =  ( 1  /  e ) | 
						
							| 33 | 26 32 | eqtrdi | ⊢ ( 𝑁  =  1  →  ( ( ( ! ‘ 𝑁 )  /  e )  −  ( 𝑆 ‘ 𝑁 ) )  =  ( 1  /  e ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( 𝑁  =  1  →  ( abs ‘ ( ( ( ! ‘ 𝑁 )  /  e )  −  ( 𝑆 ‘ 𝑁 ) ) )  =  ( abs ‘ ( 1  /  e ) ) ) | 
						
							| 35 |  | rpge0 | ⊢ ( ( 1  /  e )  ∈  ℝ+  →  0  ≤  ( 1  /  e ) ) | 
						
							| 36 | 28 35 | ax-mp | ⊢ 0  ≤  ( 1  /  e ) | 
						
							| 37 |  | absid | ⊢ ( ( ( 1  /  e )  ∈  ℝ  ∧  0  ≤  ( 1  /  e ) )  →  ( abs ‘ ( 1  /  e ) )  =  ( 1  /  e ) ) | 
						
							| 38 | 30 36 37 | mp2an | ⊢ ( abs ‘ ( 1  /  e ) )  =  ( 1  /  e ) | 
						
							| 39 | 34 38 | eqtrdi | ⊢ ( 𝑁  =  1  →  ( abs ‘ ( ( ( ! ‘ 𝑁 )  /  e )  −  ( 𝑆 ‘ 𝑁 ) ) )  =  ( 1  /  e ) ) | 
						
							| 40 |  | egt2lt3 | ⊢ ( 2  <  e  ∧  e  <  3 ) | 
						
							| 41 | 40 | simpli | ⊢ 2  <  e | 
						
							| 42 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 43 |  | ere | ⊢ e  ∈  ℝ | 
						
							| 44 |  | 2pos | ⊢ 0  <  2 | 
						
							| 45 |  | epos | ⊢ 0  <  e | 
						
							| 46 | 42 43 44 45 | ltrecii | ⊢ ( 2  <  e  ↔  ( 1  /  e )  <  ( 1  /  2 ) ) | 
						
							| 47 | 41 46 | mpbi | ⊢ ( 1  /  e )  <  ( 1  /  2 ) | 
						
							| 48 | 39 47 | eqbrtrdi | ⊢ ( 𝑁  =  1  →  ( abs ‘ ( ( ( ! ‘ 𝑁 )  /  e )  −  ( 𝑆 ‘ 𝑁 ) ) )  <  ( 1  /  2 ) ) | 
						
							| 49 |  | eluz2nn | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝑁  ∈  ℕ ) | 
						
							| 50 | 14 8 | resubcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ! ‘ 𝑁 )  /  e )  −  ( 𝑆 ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 51 | 50 | recnd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ! ‘ 𝑁 )  /  e )  −  ( 𝑆 ‘ 𝑁 ) )  ∈  ℂ ) | 
						
							| 52 | 49 51 | syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ( ( ! ‘ 𝑁 )  /  e )  −  ( 𝑆 ‘ 𝑁 ) )  ∈  ℂ ) | 
						
							| 53 | 52 | abscld | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( abs ‘ ( ( ( ! ‘ 𝑁 )  /  e )  −  ( 𝑆 ‘ 𝑁 ) ) )  ∈  ℝ ) | 
						
							| 54 | 49 | nnrecred | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 1  /  𝑁 )  ∈  ℝ ) | 
						
							| 55 | 15 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 1  /  2 )  ∈  ℝ ) | 
						
							| 56 | 1 2 | subfaclim | ⊢ ( 𝑁  ∈  ℕ  →  ( abs ‘ ( ( ( ! ‘ 𝑁 )  /  e )  −  ( 𝑆 ‘ 𝑁 ) ) )  <  ( 1  /  𝑁 ) ) | 
						
							| 57 | 49 56 | syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( abs ‘ ( ( ( ! ‘ 𝑁 )  /  e )  −  ( 𝑆 ‘ 𝑁 ) ) )  <  ( 1  /  𝑁 ) ) | 
						
							| 58 |  | eluzle | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  2  ≤  𝑁 ) | 
						
							| 59 |  | nnre | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ ) | 
						
							| 60 |  | nngt0 | ⊢ ( 𝑁  ∈  ℕ  →  0  <  𝑁 ) | 
						
							| 61 |  | lerec | ⊢ ( ( ( 2  ∈  ℝ  ∧  0  <  2 )  ∧  ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 ) )  →  ( 2  ≤  𝑁  ↔  ( 1  /  𝑁 )  ≤  ( 1  /  2 ) ) ) | 
						
							| 62 | 42 44 61 | mpanl12 | ⊢ ( ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 )  →  ( 2  ≤  𝑁  ↔  ( 1  /  𝑁 )  ≤  ( 1  /  2 ) ) ) | 
						
							| 63 | 59 60 62 | syl2anc | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ≤  𝑁  ↔  ( 1  /  𝑁 )  ≤  ( 1  /  2 ) ) ) | 
						
							| 64 | 49 63 | syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2  ≤  𝑁  ↔  ( 1  /  𝑁 )  ≤  ( 1  /  2 ) ) ) | 
						
							| 65 | 58 64 | mpbid | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 1  /  𝑁 )  ≤  ( 1  /  2 ) ) | 
						
							| 66 | 53 54 55 57 65 | ltletrd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( abs ‘ ( ( ( ! ‘ 𝑁 )  /  e )  −  ( 𝑆 ‘ 𝑁 ) ) )  <  ( 1  /  2 ) ) | 
						
							| 67 | 48 66 | jaoi | ⊢ ( ( 𝑁  =  1  ∨  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  ( abs ‘ ( ( ( ! ‘ 𝑁 )  /  e )  −  ( 𝑆 ‘ 𝑁 ) ) )  <  ( 1  /  2 ) ) | 
						
							| 68 | 18 67 | sylbi | ⊢ ( 𝑁  ∈  ℕ  →  ( abs ‘ ( ( ( ! ‘ 𝑁 )  /  e )  −  ( 𝑆 ‘ 𝑁 ) ) )  <  ( 1  /  2 ) ) | 
						
							| 69 | 15 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  /  2 )  ∈  ℝ ) | 
						
							| 70 | 14 8 69 | absdifltd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( abs ‘ ( ( ( ! ‘ 𝑁 )  /  e )  −  ( 𝑆 ‘ 𝑁 ) ) )  <  ( 1  /  2 )  ↔  ( ( ( 𝑆 ‘ 𝑁 )  −  ( 1  /  2 ) )  <  ( ( ! ‘ 𝑁 )  /  e )  ∧  ( ( ! ‘ 𝑁 )  /  e )  <  ( ( 𝑆 ‘ 𝑁 )  +  ( 1  /  2 ) ) ) ) ) | 
						
							| 71 | 68 70 | mpbid | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 𝑆 ‘ 𝑁 )  −  ( 1  /  2 ) )  <  ( ( ! ‘ 𝑁 )  /  e )  ∧  ( ( ! ‘ 𝑁 )  /  e )  <  ( ( 𝑆 ‘ 𝑁 )  +  ( 1  /  2 ) ) ) ) | 
						
							| 72 | 71 | simpld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑆 ‘ 𝑁 )  −  ( 1  /  2 ) )  <  ( ( ! ‘ 𝑁 )  /  e ) ) | 
						
							| 73 | 8 69 14 | ltsubaddd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 𝑆 ‘ 𝑁 )  −  ( 1  /  2 ) )  <  ( ( ! ‘ 𝑁 )  /  e )  ↔  ( 𝑆 ‘ 𝑁 )  <  ( ( ( ! ‘ 𝑁 )  /  e )  +  ( 1  /  2 ) ) ) ) | 
						
							| 74 | 72 73 | mpbid | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑆 ‘ 𝑁 )  <  ( ( ( ! ‘ 𝑁 )  /  e )  +  ( 1  /  2 ) ) ) | 
						
							| 75 | 8 17 74 | ltled | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑆 ‘ 𝑁 )  ≤  ( ( ( ! ‘ 𝑁 )  /  e )  +  ( 1  /  2 ) ) ) | 
						
							| 76 |  | readdcl | ⊢ ( ( ( 𝑆 ‘ 𝑁 )  ∈  ℝ  ∧  ( 1  /  2 )  ∈  ℝ )  →  ( ( 𝑆 ‘ 𝑁 )  +  ( 1  /  2 ) )  ∈  ℝ ) | 
						
							| 77 | 8 15 76 | sylancl | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑆 ‘ 𝑁 )  +  ( 1  /  2 ) )  ∈  ℝ ) | 
						
							| 78 | 71 | simprd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ! ‘ 𝑁 )  /  e )  <  ( ( 𝑆 ‘ 𝑁 )  +  ( 1  /  2 ) ) ) | 
						
							| 79 | 14 77 69 78 | ltadd1dd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ! ‘ 𝑁 )  /  e )  +  ( 1  /  2 ) )  <  ( ( ( 𝑆 ‘ 𝑁 )  +  ( 1  /  2 ) )  +  ( 1  /  2 ) ) ) | 
						
							| 80 | 8 | recnd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑆 ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 81 | 69 | recnd | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  /  2 )  ∈  ℂ ) | 
						
							| 82 | 80 81 81 | addassd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 𝑆 ‘ 𝑁 )  +  ( 1  /  2 ) )  +  ( 1  /  2 ) )  =  ( ( 𝑆 ‘ 𝑁 )  +  ( ( 1  /  2 )  +  ( 1  /  2 ) ) ) ) | 
						
							| 83 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 84 |  | 2halves | ⊢ ( 1  ∈  ℂ  →  ( ( 1  /  2 )  +  ( 1  /  2 ) )  =  1 ) | 
						
							| 85 | 83 84 | ax-mp | ⊢ ( ( 1  /  2 )  +  ( 1  /  2 ) )  =  1 | 
						
							| 86 | 85 | oveq2i | ⊢ ( ( 𝑆 ‘ 𝑁 )  +  ( ( 1  /  2 )  +  ( 1  /  2 ) ) )  =  ( ( 𝑆 ‘ 𝑁 )  +  1 ) | 
						
							| 87 | 82 86 | eqtrdi | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 𝑆 ‘ 𝑁 )  +  ( 1  /  2 ) )  +  ( 1  /  2 ) )  =  ( ( 𝑆 ‘ 𝑁 )  +  1 ) ) | 
						
							| 88 | 79 87 | breqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ! ‘ 𝑁 )  /  e )  +  ( 1  /  2 ) )  <  ( ( 𝑆 ‘ 𝑁 )  +  1 ) ) | 
						
							| 89 |  | flbi | ⊢ ( ( ( ( ( ! ‘ 𝑁 )  /  e )  +  ( 1  /  2 ) )  ∈  ℝ  ∧  ( 𝑆 ‘ 𝑁 )  ∈  ℤ )  →  ( ( ⌊ ‘ ( ( ( ! ‘ 𝑁 )  /  e )  +  ( 1  /  2 ) ) )  =  ( 𝑆 ‘ 𝑁 )  ↔  ( ( 𝑆 ‘ 𝑁 )  ≤  ( ( ( ! ‘ 𝑁 )  /  e )  +  ( 1  /  2 ) )  ∧  ( ( ( ! ‘ 𝑁 )  /  e )  +  ( 1  /  2 ) )  <  ( ( 𝑆 ‘ 𝑁 )  +  1 ) ) ) ) | 
						
							| 90 | 17 7 89 | syl2anc | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ⌊ ‘ ( ( ( ! ‘ 𝑁 )  /  e )  +  ( 1  /  2 ) ) )  =  ( 𝑆 ‘ 𝑁 )  ↔  ( ( 𝑆 ‘ 𝑁 )  ≤  ( ( ( ! ‘ 𝑁 )  /  e )  +  ( 1  /  2 ) )  ∧  ( ( ( ! ‘ 𝑁 )  /  e )  +  ( 1  /  2 ) )  <  ( ( 𝑆 ‘ 𝑁 )  +  1 ) ) ) ) | 
						
							| 91 | 75 88 90 | mpbir2and | ⊢ ( 𝑁  ∈  ℕ  →  ( ⌊ ‘ ( ( ( ! ‘ 𝑁 )  /  e )  +  ( 1  /  2 ) ) )  =  ( 𝑆 ‘ 𝑁 ) ) | 
						
							| 92 | 91 | eqcomd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑆 ‘ 𝑁 )  =  ( ⌊ ‘ ( ( ( ! ‘ 𝑁 )  /  e )  +  ( 1  /  2 ) ) ) ) |