Metamath Proof Explorer


Theorem subfac1

Description: The subfactorial at one. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses derang.d 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥1-1-onto𝑥 ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) ≠ 𝑦 ) } ) )
subfac.n 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) )
Assertion subfac1 ( 𝑆 ‘ 1 ) = 0

Proof

Step Hyp Ref Expression
1 derang.d 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥1-1-onto𝑥 ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) ≠ 𝑦 ) } ) )
2 subfac.n 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) )
3 1nn0 1 ∈ ℕ0
4 1 2 subfacval ( 1 ∈ ℕ0 → ( 𝑆 ‘ 1 ) = ( 𝐷 ‘ ( 1 ... 1 ) ) )
5 3 4 ax-mp ( 𝑆 ‘ 1 ) = ( 𝐷 ‘ ( 1 ... 1 ) )
6 1z 1 ∈ ℤ
7 fzsn ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } )
8 6 7 ax-mp ( 1 ... 1 ) = { 1 }
9 8 fveq2i ( 𝐷 ‘ ( 1 ... 1 ) ) = ( 𝐷 ‘ { 1 } )
10 1 derangsn ( 1 ∈ ℕ0 → ( 𝐷 ‘ { 1 } ) = 0 )
11 3 10 ax-mp ( 𝐷 ‘ { 1 } ) = 0
12 5 9 11 3eqtri ( 𝑆 ‘ 1 ) = 0