| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derang.d | ⊢ 𝐷  =  ( 𝑥  ∈  Fin  ↦  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : 𝑥 –1-1-onto→ 𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) | 
						
							| 2 |  | subfac.n | ⊢ 𝑆  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) | 
						
							| 3 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 4 | 1 2 | subfacval | ⊢ ( 1  ∈  ℕ0  →  ( 𝑆 ‘ 1 )  =  ( 𝐷 ‘ ( 1 ... 1 ) ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( 𝑆 ‘ 1 )  =  ( 𝐷 ‘ ( 1 ... 1 ) ) | 
						
							| 6 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 7 |  | fzsn | ⊢ ( 1  ∈  ℤ  →  ( 1 ... 1 )  =  { 1 } ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ( 1 ... 1 )  =  { 1 } | 
						
							| 9 | 8 | fveq2i | ⊢ ( 𝐷 ‘ ( 1 ... 1 ) )  =  ( 𝐷 ‘ { 1 } ) | 
						
							| 10 | 1 | derangsn | ⊢ ( 1  ∈  ℕ0  →  ( 𝐷 ‘ { 1 } )  =  0 ) | 
						
							| 11 | 3 10 | ax-mp | ⊢ ( 𝐷 ‘ { 1 } )  =  0 | 
						
							| 12 | 5 9 11 | 3eqtri | ⊢ ( 𝑆 ‘ 1 )  =  0 |