Metamath Proof Explorer


Theorem subfacp1lem1

Description: Lemma for subfacp1 . The set K together with { 1 , M } partitions the set 1 ... ( N + 1 ) . (Contributed by Mario Carneiro, 23-Jan-2015)

Ref Expression
Hypotheses derang.d 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥1-1-onto𝑥 ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) ≠ 𝑦 ) } ) )
subfac.n 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) )
subfacp1lem.a 𝐴 = { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓𝑦 ) ≠ 𝑦 ) }
subfacp1lem1.n ( 𝜑𝑁 ∈ ℕ )
subfacp1lem1.m ( 𝜑𝑀 ∈ ( 2 ... ( 𝑁 + 1 ) ) )
subfacp1lem1.x 𝑀 ∈ V
subfacp1lem1.k 𝐾 = ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } )
Assertion subfacp1lem1 ( 𝜑 → ( ( 𝐾 ∩ { 1 , 𝑀 } ) = ∅ ∧ ( 𝐾 ∪ { 1 , 𝑀 } ) = ( 1 ... ( 𝑁 + 1 ) ) ∧ ( ♯ ‘ 𝐾 ) = ( 𝑁 − 1 ) ) )

Proof

Step Hyp Ref Expression
1 derang.d 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥1-1-onto𝑥 ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) ≠ 𝑦 ) } ) )
2 subfac.n 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) )
3 subfacp1lem.a 𝐴 = { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓𝑦 ) ≠ 𝑦 ) }
4 subfacp1lem1.n ( 𝜑𝑁 ∈ ℕ )
5 subfacp1lem1.m ( 𝜑𝑀 ∈ ( 2 ... ( 𝑁 + 1 ) ) )
6 subfacp1lem1.x 𝑀 ∈ V
7 subfacp1lem1.k 𝐾 = ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } )
8 disj ( ( 𝐾 ∩ { 1 , 𝑀 } ) = ∅ ↔ ∀ 𝑥𝐾 ¬ 𝑥 ∈ { 1 , 𝑀 } )
9 eldifi ( 𝑥 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) → 𝑥 ∈ ( 2 ... ( 𝑁 + 1 ) ) )
10 elfzle1 ( 𝑥 ∈ ( 2 ... ( 𝑁 + 1 ) ) → 2 ≤ 𝑥 )
11 1lt2 1 < 2
12 1re 1 ∈ ℝ
13 2re 2 ∈ ℝ
14 12 13 ltnlei ( 1 < 2 ↔ ¬ 2 ≤ 1 )
15 11 14 mpbi ¬ 2 ≤ 1
16 breq2 ( 𝑥 = 1 → ( 2 ≤ 𝑥 ↔ 2 ≤ 1 ) )
17 15 16 mtbiri ( 𝑥 = 1 → ¬ 2 ≤ 𝑥 )
18 17 necon2ai ( 2 ≤ 𝑥𝑥 ≠ 1 )
19 9 10 18 3syl ( 𝑥 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) → 𝑥 ≠ 1 )
20 eldifsni ( 𝑥 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) → 𝑥𝑀 )
21 19 20 jca ( 𝑥 ∈ ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) → ( 𝑥 ≠ 1 ∧ 𝑥𝑀 ) )
22 21 7 eleq2s ( 𝑥𝐾 → ( 𝑥 ≠ 1 ∧ 𝑥𝑀 ) )
23 neanior ( ( 𝑥 ≠ 1 ∧ 𝑥𝑀 ) ↔ ¬ ( 𝑥 = 1 ∨ 𝑥 = 𝑀 ) )
24 22 23 sylib ( 𝑥𝐾 → ¬ ( 𝑥 = 1 ∨ 𝑥 = 𝑀 ) )
25 vex 𝑥 ∈ V
26 25 elpr ( 𝑥 ∈ { 1 , 𝑀 } ↔ ( 𝑥 = 1 ∨ 𝑥 = 𝑀 ) )
27 24 26 sylnibr ( 𝑥𝐾 → ¬ 𝑥 ∈ { 1 , 𝑀 } )
28 8 27 mprgbir ( 𝐾 ∩ { 1 , 𝑀 } ) = ∅
29 28 a1i ( 𝜑 → ( 𝐾 ∩ { 1 , 𝑀 } ) = ∅ )
30 uncom ( { 1 } ∪ ( 𝐾 ∪ { 𝑀 } ) ) = ( ( 𝐾 ∪ { 𝑀 } ) ∪ { 1 } )
31 1z 1 ∈ ℤ
32 fzsn ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } )
33 31 32 ax-mp ( 1 ... 1 ) = { 1 }
34 7 uneq1i ( 𝐾 ∪ { 𝑀 } ) = ( ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) ∪ { 𝑀 } )
35 undif1 ( ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) ∪ { 𝑀 } ) = ( ( 2 ... ( 𝑁 + 1 ) ) ∪ { 𝑀 } )
36 34 35 eqtr2i ( ( 2 ... ( 𝑁 + 1 ) ) ∪ { 𝑀 } ) = ( 𝐾 ∪ { 𝑀 } )
37 33 36 uneq12i ( ( 1 ... 1 ) ∪ ( ( 2 ... ( 𝑁 + 1 ) ) ∪ { 𝑀 } ) ) = ( { 1 } ∪ ( 𝐾 ∪ { 𝑀 } ) )
38 df-pr { 1 , 𝑀 } = ( { 1 } ∪ { 𝑀 } )
39 38 equncomi { 1 , 𝑀 } = ( { 𝑀 } ∪ { 1 } )
40 39 uneq2i ( 𝐾 ∪ { 1 , 𝑀 } ) = ( 𝐾 ∪ ( { 𝑀 } ∪ { 1 } ) )
41 unass ( ( 𝐾 ∪ { 𝑀 } ) ∪ { 1 } ) = ( 𝐾 ∪ ( { 𝑀 } ∪ { 1 } ) )
42 40 41 eqtr4i ( 𝐾 ∪ { 1 , 𝑀 } ) = ( ( 𝐾 ∪ { 𝑀 } ) ∪ { 1 } )
43 30 37 42 3eqtr4i ( ( 1 ... 1 ) ∪ ( ( 2 ... ( 𝑁 + 1 ) ) ∪ { 𝑀 } ) ) = ( 𝐾 ∪ { 1 , 𝑀 } )
44 5 snssd ( 𝜑 → { 𝑀 } ⊆ ( 2 ... ( 𝑁 + 1 ) ) )
45 ssequn2 ( { 𝑀 } ⊆ ( 2 ... ( 𝑁 + 1 ) ) ↔ ( ( 2 ... ( 𝑁 + 1 ) ) ∪ { 𝑀 } ) = ( 2 ... ( 𝑁 + 1 ) ) )
46 44 45 sylib ( 𝜑 → ( ( 2 ... ( 𝑁 + 1 ) ) ∪ { 𝑀 } ) = ( 2 ... ( 𝑁 + 1 ) ) )
47 df-2 2 = ( 1 + 1 )
48 47 oveq1i ( 2 ... ( 𝑁 + 1 ) ) = ( ( 1 + 1 ) ... ( 𝑁 + 1 ) )
49 46 48 eqtrdi ( 𝜑 → ( ( 2 ... ( 𝑁 + 1 ) ) ∪ { 𝑀 } ) = ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) )
50 49 uneq2d ( 𝜑 → ( ( 1 ... 1 ) ∪ ( ( 2 ... ( 𝑁 + 1 ) ) ∪ { 𝑀 } ) ) = ( ( 1 ... 1 ) ∪ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ) )
51 4 peano2nnd ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ )
52 nnuz ℕ = ( ℤ ‘ 1 )
53 51 52 eleqtrdi ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ ‘ 1 ) )
54 eluzfz1 ( ( 𝑁 + 1 ) ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) )
55 fzsplit ( 1 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( 1 ... ( 𝑁 + 1 ) ) = ( ( 1 ... 1 ) ∪ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ) )
56 53 54 55 3syl ( 𝜑 → ( 1 ... ( 𝑁 + 1 ) ) = ( ( 1 ... 1 ) ∪ ( ( 1 + 1 ) ... ( 𝑁 + 1 ) ) ) )
57 50 56 eqtr4d ( 𝜑 → ( ( 1 ... 1 ) ∪ ( ( 2 ... ( 𝑁 + 1 ) ) ∪ { 𝑀 } ) ) = ( 1 ... ( 𝑁 + 1 ) ) )
58 43 57 syl5eqr ( 𝜑 → ( 𝐾 ∪ { 1 , 𝑀 } ) = ( 1 ... ( 𝑁 + 1 ) ) )
59 47 oveq2i ( ( 𝑁 + 1 ) − 2 ) = ( ( 𝑁 + 1 ) − ( 1 + 1 ) )
60 fzfi ( 2 ... ( 𝑁 + 1 ) ) ∈ Fin
61 diffi ( ( 2 ... ( 𝑁 + 1 ) ) ∈ Fin → ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) ∈ Fin )
62 60 61 ax-mp ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) ∈ Fin
63 7 62 eqeltri 𝐾 ∈ Fin
64 prfi { 1 , 𝑀 } ∈ Fin
65 hashun ( ( 𝐾 ∈ Fin ∧ { 1 , 𝑀 } ∈ Fin ∧ ( 𝐾 ∩ { 1 , 𝑀 } ) = ∅ ) → ( ♯ ‘ ( 𝐾 ∪ { 1 , 𝑀 } ) ) = ( ( ♯ ‘ 𝐾 ) + ( ♯ ‘ { 1 , 𝑀 } ) ) )
66 63 64 28 65 mp3an ( ♯ ‘ ( 𝐾 ∪ { 1 , 𝑀 } ) ) = ( ( ♯ ‘ 𝐾 ) + ( ♯ ‘ { 1 , 𝑀 } ) )
67 58 fveq2d ( 𝜑 → ( ♯ ‘ ( 𝐾 ∪ { 1 , 𝑀 } ) ) = ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) )
68 neeq1 ( 𝑥 = 𝑀 → ( 𝑥 ≠ 1 ↔ 𝑀 ≠ 1 ) )
69 10 18 syl ( 𝑥 ∈ ( 2 ... ( 𝑁 + 1 ) ) → 𝑥 ≠ 1 )
70 68 69 vtoclga ( 𝑀 ∈ ( 2 ... ( 𝑁 + 1 ) ) → 𝑀 ≠ 1 )
71 5 70 syl ( 𝜑𝑀 ≠ 1 )
72 71 necomd ( 𝜑 → 1 ≠ 𝑀 )
73 1ex 1 ∈ V
74 hashprg ( ( 1 ∈ V ∧ 𝑀 ∈ V ) → ( 1 ≠ 𝑀 ↔ ( ♯ ‘ { 1 , 𝑀 } ) = 2 ) )
75 73 6 74 mp2an ( 1 ≠ 𝑀 ↔ ( ♯ ‘ { 1 , 𝑀 } ) = 2 )
76 72 75 sylib ( 𝜑 → ( ♯ ‘ { 1 , 𝑀 } ) = 2 )
77 76 oveq2d ( 𝜑 → ( ( ♯ ‘ 𝐾 ) + ( ♯ ‘ { 1 , 𝑀 } ) ) = ( ( ♯ ‘ 𝐾 ) + 2 ) )
78 66 67 77 3eqtr3a ( 𝜑 → ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) = ( ( ♯ ‘ 𝐾 ) + 2 ) )
79 51 nnnn0d ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 )
80 hashfz1 ( ( 𝑁 + 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) )
81 79 80 syl ( 𝜑 → ( ♯ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) )
82 78 81 eqtr3d ( 𝜑 → ( ( ♯ ‘ 𝐾 ) + 2 ) = ( 𝑁 + 1 ) )
83 51 nncnd ( 𝜑 → ( 𝑁 + 1 ) ∈ ℂ )
84 2cnd ( 𝜑 → 2 ∈ ℂ )
85 hashcl ( 𝐾 ∈ Fin → ( ♯ ‘ 𝐾 ) ∈ ℕ0 )
86 63 85 ax-mp ( ♯ ‘ 𝐾 ) ∈ ℕ0
87 86 nn0cni ( ♯ ‘ 𝐾 ) ∈ ℂ
88 87 a1i ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℂ )
89 83 84 88 subadd2d ( 𝜑 → ( ( ( 𝑁 + 1 ) − 2 ) = ( ♯ ‘ 𝐾 ) ↔ ( ( ♯ ‘ 𝐾 ) + 2 ) = ( 𝑁 + 1 ) ) )
90 82 89 mpbird ( 𝜑 → ( ( 𝑁 + 1 ) − 2 ) = ( ♯ ‘ 𝐾 ) )
91 4 nncnd ( 𝜑𝑁 ∈ ℂ )
92 1cnd ( 𝜑 → 1 ∈ ℂ )
93 91 92 92 pnpcan2d ( 𝜑 → ( ( 𝑁 + 1 ) − ( 1 + 1 ) ) = ( 𝑁 − 1 ) )
94 59 90 93 3eqtr3a ( 𝜑 → ( ♯ ‘ 𝐾 ) = ( 𝑁 − 1 ) )
95 29 58 94 3jca ( 𝜑 → ( ( 𝐾 ∩ { 1 , 𝑀 } ) = ∅ ∧ ( 𝐾 ∪ { 1 , 𝑀 } ) = ( 1 ... ( 𝑁 + 1 ) ) ∧ ( ♯ ‘ 𝐾 ) = ( 𝑁 − 1 ) ) )