Step |
Hyp |
Ref |
Expression |
1 |
|
derang.d |
⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
2 |
|
subfac.n |
⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) |
3 |
|
f1oeq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ↔ 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑔 ‘ 𝑧 ) = ( 𝑔 ‘ 𝑦 ) ) |
5 |
|
id |
⊢ ( 𝑧 = 𝑦 → 𝑧 = 𝑦 ) |
6 |
4 5
|
neeq12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑔 ‘ 𝑧 ) ≠ 𝑧 ↔ ( 𝑔 ‘ 𝑦 ) ≠ 𝑦 ) ) |
7 |
6
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑔 ‘ 𝑧 ) ≠ 𝑧 ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑔 ‘ 𝑦 ) ≠ 𝑦 ) |
8 |
|
fveq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑦 ) ) |
9 |
8
|
neeq1d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑔 ‘ 𝑦 ) ≠ 𝑦 ↔ ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑔 = 𝑓 → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑔 ‘ 𝑦 ) ≠ 𝑦 ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ) |
11 |
7 10
|
syl5bb |
⊢ ( 𝑔 = 𝑓 → ( ∀ 𝑧 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑔 ‘ 𝑧 ) ≠ 𝑧 ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ) |
12 |
3 11
|
anbi12d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑔 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑧 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑔 ‘ 𝑧 ) ≠ 𝑧 ) ↔ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ) ) |
13 |
12
|
cbvabv |
⊢ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑧 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑔 ‘ 𝑧 ) ≠ 𝑧 ) } = { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } |
14 |
1 2 13
|
subfacp1lem6 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑆 ‘ ( 𝑁 + 1 ) ) = ( 𝑁 · ( ( 𝑆 ‘ 𝑁 ) + ( 𝑆 ‘ ( 𝑁 − 1 ) ) ) ) ) |