Description: A two-term recurrence for the subfactorial. This theorem allows to forget the combinatorial definition of the derangement number in favor of the recursive definition provided by this theorem and subfac0 , subfac1 . (Contributed by Mario Carneiro, 23-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | derang.d | |
|
subfac.n | |
||
Assertion | subfacp1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | derang.d | |
|
2 | subfac.n | |
|
3 | f1oeq1 | |
|
4 | fveq2 | |
|
5 | id | |
|
6 | 4 5 | neeq12d | |
7 | 6 | cbvralvw | |
8 | fveq1 | |
|
9 | 8 | neeq1d | |
10 | 9 | ralbidv | |
11 | 7 10 | bitrid | |
12 | 3 11 | anbi12d | |
13 | 12 | cbvabv | |
14 | 1 2 13 | subfacp1lem6 | |