Metamath Proof Explorer


Theorem subfac1

Description: The subfactorial at one. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses derang.d D=xFinf|f:x1-1 ontoxyxfyy
subfac.n S=n0D1n
Assertion subfac1 S1=0

Proof

Step Hyp Ref Expression
1 derang.d D=xFinf|f:x1-1 ontoxyxfyy
2 subfac.n S=n0D1n
3 1nn0 10
4 1 2 subfacval 10S1=D11
5 3 4 ax-mp S1=D11
6 1z 1
7 fzsn 111=1
8 6 7 ax-mp 11=1
9 8 fveq2i D11=D1
10 1 derangsn 10D1=0
11 3 10 ax-mp D1=0
12 5 9 11 3eqtri S1=0