Metamath Proof Explorer


Theorem subfacp1lem1

Description: Lemma for subfacp1 . The set K together with { 1 , M } partitions the set 1 ... ( N + 1 ) . (Contributed by Mario Carneiro, 23-Jan-2015)

Ref Expression
Hypotheses derang.d D=xFinf|f:x1-1 ontoxyxfyy
subfac.n S=n0D1n
subfacp1lem.a A=f|f:1N+11-1 onto1N+1y1N+1fyy
subfacp1lem1.n φN
subfacp1lem1.m φM2N+1
subfacp1lem1.x MV
subfacp1lem1.k K=2N+1M
Assertion subfacp1lem1 φK1M=K1M=1N+1K=N1

Proof

Step Hyp Ref Expression
1 derang.d D=xFinf|f:x1-1 ontoxyxfyy
2 subfac.n S=n0D1n
3 subfacp1lem.a A=f|f:1N+11-1 onto1N+1y1N+1fyy
4 subfacp1lem1.n φN
5 subfacp1lem1.m φM2N+1
6 subfacp1lem1.x MV
7 subfacp1lem1.k K=2N+1M
8 disj K1M=xK¬x1M
9 eldifi x2N+1Mx2N+1
10 elfzle1 x2N+12x
11 1lt2 1<2
12 1re 1
13 2re 2
14 12 13 ltnlei 1<2¬21
15 11 14 mpbi ¬21
16 breq2 x=12x21
17 15 16 mtbiri x=1¬2x
18 17 necon2ai 2xx1
19 9 10 18 3syl x2N+1Mx1
20 eldifsni x2N+1MxM
21 19 20 jca x2N+1Mx1xM
22 21 7 eleq2s xKx1xM
23 neanior x1xM¬x=1x=M
24 22 23 sylib xK¬x=1x=M
25 vex xV
26 25 elpr x1Mx=1x=M
27 24 26 sylnibr xK¬x1M
28 8 27 mprgbir K1M=
29 28 a1i φK1M=
30 uncom 1KM=KM1
31 1z 1
32 fzsn 111=1
33 31 32 ax-mp 11=1
34 7 uneq1i KM=2N+1MM
35 undif1 2N+1MM=2N+1M
36 34 35 eqtr2i 2N+1M=KM
37 33 36 uneq12i 112N+1M=1KM
38 df-pr 1M=1M
39 38 equncomi 1M=M1
40 39 uneq2i K1M=KM1
41 unass KM1=KM1
42 40 41 eqtr4i K1M=KM1
43 30 37 42 3eqtr4i 112N+1M=K1M
44 5 snssd φM2N+1
45 ssequn2 M2N+12N+1M=2N+1
46 44 45 sylib φ2N+1M=2N+1
47 df-2 2=1+1
48 47 oveq1i 2N+1=1+1N+1
49 46 48 eqtrdi φ2N+1M=1+1N+1
50 49 uneq2d φ112N+1M=111+1N+1
51 4 peano2nnd φN+1
52 nnuz =1
53 51 52 eleqtrdi φN+11
54 eluzfz1 N+1111N+1
55 fzsplit 11N+11N+1=111+1N+1
56 53 54 55 3syl φ1N+1=111+1N+1
57 50 56 eqtr4d φ112N+1M=1N+1
58 43 57 eqtr3id φK1M=1N+1
59 47 oveq2i N+1-2=N+1-1+1
60 fzfi 2N+1Fin
61 diffi 2N+1Fin2N+1MFin
62 60 61 ax-mp 2N+1MFin
63 7 62 eqeltri KFin
64 prfi 1MFin
65 hashun KFin1MFinK1M=K1M=K+1M
66 63 64 28 65 mp3an K1M=K+1M
67 58 fveq2d φK1M=1N+1
68 neeq1 x=Mx1M1
69 10 18 syl x2N+1x1
70 68 69 vtoclga M2N+1M1
71 5 70 syl φM1
72 71 necomd φ1M
73 1ex 1V
74 hashprg 1VMV1M1M=2
75 73 6 74 mp2an 1M1M=2
76 72 75 sylib φ1M=2
77 76 oveq2d φK+1M=K+2
78 66 67 77 3eqtr3a φ1N+1=K+2
79 51 nnnn0d φN+10
80 hashfz1 N+101N+1=N+1
81 79 80 syl φ1N+1=N+1
82 78 81 eqtr3d φK+2=N+1
83 51 nncnd φN+1
84 2cnd φ2
85 hashcl KFinK0
86 63 85 ax-mp K0
87 86 nn0cni K
88 87 a1i φK
89 83 84 88 subadd2d φN+1-2=KK+2=N+1
90 82 89 mpbird φN+1-2=K
91 4 nncnd φN
92 1cnd φ1
93 91 92 92 pnpcan2d φN+1-1+1=N1
94 59 90 93 3eqtr3a φK=N1
95 29 58 94 3jca φK1M=K1M=1N+1K=N1