| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derang.d |  |-  D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) | 
						
							| 2 |  | subfac.n |  |-  S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) | 
						
							| 3 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 4 | 1 2 | subfacval |  |-  ( 1 e. NN0 -> ( S ` 1 ) = ( D ` ( 1 ... 1 ) ) ) | 
						
							| 5 | 3 4 | ax-mp |  |-  ( S ` 1 ) = ( D ` ( 1 ... 1 ) ) | 
						
							| 6 |  | 1z |  |-  1 e. ZZ | 
						
							| 7 |  | fzsn |  |-  ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ( 1 ... 1 ) = { 1 } | 
						
							| 9 | 8 | fveq2i |  |-  ( D ` ( 1 ... 1 ) ) = ( D ` { 1 } ) | 
						
							| 10 | 1 | derangsn |  |-  ( 1 e. NN0 -> ( D ` { 1 } ) = 0 ) | 
						
							| 11 | 3 10 | ax-mp |  |-  ( D ` { 1 } ) = 0 | 
						
							| 12 | 5 9 11 | 3eqtri |  |-  ( S ` 1 ) = 0 |