Metamath Proof Explorer


Theorem subfac0

Description: The subfactorial at zero. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses derang.d D=xFinf|f:x1-1 ontoxyxfyy
subfac.n S=n0D1n
Assertion subfac0 S0=1

Proof

Step Hyp Ref Expression
1 derang.d D=xFinf|f:x1-1 ontoxyxfyy
2 subfac.n S=n0D1n
3 0nn0 00
4 1 2 subfacval 00S0=D10
5 3 4 ax-mp S0=D10
6 fz10 10=
7 6 fveq2i D10=D
8 1 derang0 D=1
9 5 7 8 3eqtri S0=1