Metamath Proof Explorer


Theorem subfac0

Description: The subfactorial at zero. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses derang.d
|- D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) )
subfac.n
|- S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) )
Assertion subfac0
|- ( S ` 0 ) = 1

Proof

Step Hyp Ref Expression
1 derang.d
 |-  D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) )
2 subfac.n
 |-  S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) )
3 0nn0
 |-  0 e. NN0
4 1 2 subfacval
 |-  ( 0 e. NN0 -> ( S ` 0 ) = ( D ` ( 1 ... 0 ) ) )
5 3 4 ax-mp
 |-  ( S ` 0 ) = ( D ` ( 1 ... 0 ) )
6 fz10
 |-  ( 1 ... 0 ) = (/)
7 6 fveq2i
 |-  ( D ` ( 1 ... 0 ) ) = ( D ` (/) )
8 1 derang0
 |-  ( D ` (/) ) = 1
9 5 7 8 3eqtri
 |-  ( S ` 0 ) = 1