Description: The subfactorial at zero. (Contributed by Mario Carneiro, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | derang.d | |- D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) | |
| subfac.n | |- S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) | ||
| Assertion | subfac0 | |- ( S ` 0 ) = 1 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | derang.d |  |-  D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) | |
| 2 | subfac.n | |- S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) | |
| 3 | 0nn0 | |- 0 e. NN0 | |
| 4 | 1 2 | subfacval | |- ( 0 e. NN0 -> ( S ` 0 ) = ( D ` ( 1 ... 0 ) ) ) | 
| 5 | 3 4 | ax-mp | |- ( S ` 0 ) = ( D ` ( 1 ... 0 ) ) | 
| 6 | fz10 | |- ( 1 ... 0 ) = (/) | |
| 7 | 6 | fveq2i | |- ( D ` ( 1 ... 0 ) ) = ( D ` (/) ) | 
| 8 | 1 | derang0 | |- ( D ` (/) ) = 1 | 
| 9 | 5 7 8 | 3eqtri | |- ( S ` 0 ) = 1 |