| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derang.d | ⊢ 𝐷  =  ( 𝑥  ∈  Fin  ↦  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : 𝑥 –1-1-onto→ 𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) | 
						
							| 2 |  | subfac.n | ⊢ 𝑆  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) | 
						
							| 3 |  | subfacp1lem.a | ⊢ 𝐴  =  { 𝑓  ∣  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } | 
						
							| 4 |  | peano2nn | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 5 | 4 | nnnn0d | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 6 | 1 2 | subfacval | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( 𝑆 ‘ ( 𝑁  +  1 ) )  =  ( 𝐷 ‘ ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑆 ‘ ( 𝑁  +  1 ) )  =  ( 𝐷 ‘ ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 8 |  | fzfid | ⊢ ( 𝑁  ∈  ℕ  →  ( 1 ... ( 𝑁  +  1 ) )  ∈  Fin ) | 
						
							| 9 | 1 | derangval | ⊢ ( ( 1 ... ( 𝑁  +  1 ) )  ∈  Fin  →  ( 𝐷 ‘ ( 1 ... ( 𝑁  +  1 ) ) )  =  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐷 ‘ ( 1 ... ( 𝑁  +  1 ) ) )  =  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) | 
						
							| 11 | 3 | fveq2i | ⊢ ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) | 
						
							| 12 | 10 11 | eqtr4di | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐷 ‘ ( 1 ... ( 𝑁  +  1 ) ) )  =  ( ♯ ‘ 𝐴 ) ) | 
						
							| 13 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 14 | 4 13 | eleqtrdi | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 15 |  | eluzfz1 | ⊢ ( ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 17 |  | f1of | ⊢ ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  →  𝑓 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 )  →  𝑓 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 19 |  | ffvelcdm | ⊢ ( ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) )  ∧  1  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝑓 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 20 | 19 | expcom | ⊢ ( 1  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) )  →  ( 𝑓 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 21 | 16 18 20 | syl2im | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 )  →  ( 𝑓 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 22 | 21 | ss2abdv | ⊢ ( 𝑁  ∈  ℕ  →  { 𝑓  ∣  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) }  ⊆  { 𝑓  ∣  ( 𝑓 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) } ) | 
						
							| 23 |  | fveq1 | ⊢ ( 𝑔  =  𝑓  →  ( 𝑔 ‘ 1 )  =  ( 𝑓 ‘ 1 ) ) | 
						
							| 24 | 23 | eleq1d | ⊢ ( 𝑔  =  𝑓  →  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) )  ↔  ( 𝑓 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 25 | 24 | cbvabv | ⊢ { 𝑔  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) }  =  { 𝑓  ∣  ( 𝑓 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) } | 
						
							| 26 | 22 3 25 | 3sstr4g | ⊢ ( 𝑁  ∈  ℕ  →  𝐴  ⊆  { 𝑔  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) } ) | 
						
							| 27 |  | ssabral | ⊢ ( 𝐴  ⊆  { 𝑔  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) }  ↔  ∀ 𝑔  ∈  𝐴 ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 28 | 26 27 | sylib | ⊢ ( 𝑁  ∈  ℕ  →  ∀ 𝑔  ∈  𝐴 ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 29 |  | rabid2 | ⊢ ( 𝐴  =  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) }  ↔  ∀ 𝑔  ∈  𝐴 ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 30 | 28 29 | sylibr | ⊢ ( 𝑁  ∈  ℕ  →  𝐴  =  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) } ) | 
						
							| 31 | 30 | fveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) } ) ) | 
						
							| 32 | 7 12 31 | 3eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑆 ‘ ( 𝑁  +  1 ) )  =  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) } ) ) | 
						
							| 33 |  | elfz1end | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ  ↔  ( 𝑁  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 34 | 4 33 | sylib | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 35 |  | eleq1 | ⊢ ( 𝑥  =  1  →  ( 𝑥  ∈  ( 1 ... ( 𝑁  +  1 ) )  ↔  1  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 36 |  | oveq2 | ⊢ ( 𝑥  =  1  →  ( 1 ... 𝑥 )  =  ( 1 ... 1 ) ) | 
						
							| 37 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 38 |  | fzsn | ⊢ ( 1  ∈  ℤ  →  ( 1 ... 1 )  =  { 1 } ) | 
						
							| 39 | 37 38 | ax-mp | ⊢ ( 1 ... 1 )  =  { 1 } | 
						
							| 40 | 36 39 | eqtrdi | ⊢ ( 𝑥  =  1  →  ( 1 ... 𝑥 )  =  { 1 } ) | 
						
							| 41 | 40 | eleq2d | ⊢ ( 𝑥  =  1  →  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 )  ↔  ( 𝑔 ‘ 1 )  ∈  { 1 } ) ) | 
						
							| 42 |  | fvex | ⊢ ( 𝑔 ‘ 1 )  ∈  V | 
						
							| 43 | 42 | elsn | ⊢ ( ( 𝑔 ‘ 1 )  ∈  { 1 }  ↔  ( 𝑔 ‘ 1 )  =  1 ) | 
						
							| 44 | 41 43 | bitrdi | ⊢ ( 𝑥  =  1  →  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 )  ↔  ( 𝑔 ‘ 1 )  =  1 ) ) | 
						
							| 45 | 44 | rabbidv | ⊢ ( 𝑥  =  1  →  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) }  =  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  1 } ) | 
						
							| 46 | 45 | fveq2d | ⊢ ( 𝑥  =  1  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) } )  =  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  1 } ) ) | 
						
							| 47 |  | oveq1 | ⊢ ( 𝑥  =  1  →  ( 𝑥  −  1 )  =  ( 1  −  1 ) ) | 
						
							| 48 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 49 | 47 48 | eqtrdi | ⊢ ( 𝑥  =  1  →  ( 𝑥  −  1 )  =  0 ) | 
						
							| 50 | 49 | oveq1d | ⊢ ( 𝑥  =  1  →  ( ( 𝑥  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  =  ( 0  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) | 
						
							| 51 | 46 50 | eqeq12d | ⊢ ( 𝑥  =  1  →  ( ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) } )  =  ( ( 𝑥  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  ↔  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  1 } )  =  ( 0  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) | 
						
							| 52 | 35 51 | imbi12d | ⊢ ( 𝑥  =  1  →  ( ( 𝑥  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) } )  =  ( ( 𝑥  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) )  ↔  ( 1  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  1 } )  =  ( 0  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) ) | 
						
							| 53 | 52 | imbi2d | ⊢ ( 𝑥  =  1  →  ( ( 𝑁  ∈  ℕ  →  ( 𝑥  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) } )  =  ( ( 𝑥  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) )  ↔  ( 𝑁  ∈  ℕ  →  ( 1  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  1 } )  =  ( 0  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) ) ) | 
						
							| 54 |  | eleq1 | ⊢ ( 𝑥  =  𝑚  →  ( 𝑥  ∈  ( 1 ... ( 𝑁  +  1 ) )  ↔  𝑚  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 55 |  | oveq2 | ⊢ ( 𝑥  =  𝑚  →  ( 1 ... 𝑥 )  =  ( 1 ... 𝑚 ) ) | 
						
							| 56 | 55 | eleq2d | ⊢ ( 𝑥  =  𝑚  →  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 )  ↔  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) ) ) | 
						
							| 57 | 56 | rabbidv | ⊢ ( 𝑥  =  𝑚  →  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) }  =  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } ) | 
						
							| 58 | 57 | fveq2d | ⊢ ( 𝑥  =  𝑚  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) } )  =  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } ) ) | 
						
							| 59 |  | oveq1 | ⊢ ( 𝑥  =  𝑚  →  ( 𝑥  −  1 )  =  ( 𝑚  −  1 ) ) | 
						
							| 60 | 59 | oveq1d | ⊢ ( 𝑥  =  𝑚  →  ( ( 𝑥  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  =  ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) | 
						
							| 61 | 58 60 | eqeq12d | ⊢ ( 𝑥  =  𝑚  →  ( ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) } )  =  ( ( 𝑥  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  ↔  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } )  =  ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) | 
						
							| 62 | 54 61 | imbi12d | ⊢ ( 𝑥  =  𝑚  →  ( ( 𝑥  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) } )  =  ( ( 𝑥  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) )  ↔  ( 𝑚  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } )  =  ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) ) | 
						
							| 63 | 62 | imbi2d | ⊢ ( 𝑥  =  𝑚  →  ( ( 𝑁  ∈  ℕ  →  ( 𝑥  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) } )  =  ( ( 𝑥  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) )  ↔  ( 𝑁  ∈  ℕ  →  ( 𝑚  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } )  =  ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) ) ) | 
						
							| 64 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( 𝑥  ∈  ( 1 ... ( 𝑁  +  1 ) )  ↔  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 65 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( 1 ... 𝑥 )  =  ( 1 ... ( 𝑚  +  1 ) ) ) | 
						
							| 66 | 65 | eleq2d | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 )  ↔  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) ) ) ) | 
						
							| 67 | 66 | rabbidv | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) }  =  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) ) } ) | 
						
							| 68 | 67 | fveq2d | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) } )  =  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) ) } ) ) | 
						
							| 69 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( 𝑥  −  1 )  =  ( ( 𝑚  +  1 )  −  1 ) ) | 
						
							| 70 | 69 | oveq1d | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( ( 𝑥  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  =  ( ( ( 𝑚  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) | 
						
							| 71 | 68 70 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) } )  =  ( ( 𝑥  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  ↔  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) ) } )  =  ( ( ( 𝑚  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) | 
						
							| 72 | 64 71 | imbi12d | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( ( 𝑥  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) } )  =  ( ( 𝑥  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) )  ↔  ( ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) ) } )  =  ( ( ( 𝑚  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) ) | 
						
							| 73 | 72 | imbi2d | ⊢ ( 𝑥  =  ( 𝑚  +  1 )  →  ( ( 𝑁  ∈  ℕ  →  ( 𝑥  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) } )  =  ( ( 𝑥  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) )  ↔  ( 𝑁  ∈  ℕ  →  ( ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) ) } )  =  ( ( ( 𝑚  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) ) ) | 
						
							| 74 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝑁  +  1 )  →  ( 𝑥  ∈  ( 1 ... ( 𝑁  +  1 ) )  ↔  ( 𝑁  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 75 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑁  +  1 )  →  ( 1 ... 𝑥 )  =  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 76 | 75 | eleq2d | ⊢ ( 𝑥  =  ( 𝑁  +  1 )  →  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 )  ↔  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 77 | 76 | rabbidv | ⊢ ( 𝑥  =  ( 𝑁  +  1 )  →  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) }  =  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) } ) | 
						
							| 78 | 77 | fveq2d | ⊢ ( 𝑥  =  ( 𝑁  +  1 )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) } )  =  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) } ) ) | 
						
							| 79 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑁  +  1 )  →  ( 𝑥  −  1 )  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 80 | 79 | oveq1d | ⊢ ( 𝑥  =  ( 𝑁  +  1 )  →  ( ( 𝑥  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  =  ( ( ( 𝑁  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) | 
						
							| 81 | 78 80 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑁  +  1 )  →  ( ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) } )  =  ( ( 𝑥  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  ↔  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) } )  =  ( ( ( 𝑁  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) | 
						
							| 82 | 74 81 | imbi12d | ⊢ ( 𝑥  =  ( 𝑁  +  1 )  →  ( ( 𝑥  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) } )  =  ( ( 𝑥  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) )  ↔  ( ( 𝑁  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) } )  =  ( ( ( 𝑁  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) ) | 
						
							| 83 | 82 | imbi2d | ⊢ ( 𝑥  =  ( 𝑁  +  1 )  →  ( ( 𝑁  ∈  ℕ  →  ( 𝑥  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑥 ) } )  =  ( ( 𝑥  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) )  ↔  ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) } )  =  ( ( ( 𝑁  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) ) ) | 
						
							| 84 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 85 |  | fveq2 | ⊢ ( 𝑦  =  1  →  ( 𝑓 ‘ 𝑦 )  =  ( 𝑓 ‘ 1 ) ) | 
						
							| 86 |  | id | ⊢ ( 𝑦  =  1  →  𝑦  =  1 ) | 
						
							| 87 | 85 86 | neeq12d | ⊢ ( 𝑦  =  1  →  ( ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ( 𝑓 ‘ 1 )  ≠  1 ) ) | 
						
							| 88 | 87 | rspcv | ⊢ ( 1  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦  →  ( 𝑓 ‘ 1 )  ≠  1 ) ) | 
						
							| 89 | 16 88 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦  →  ( 𝑓 ‘ 1 )  ≠  1 ) ) | 
						
							| 90 | 89 | adantld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 )  →  ( 𝑓 ‘ 1 )  ≠  1 ) ) | 
						
							| 91 | 90 | ss2abdv | ⊢ ( 𝑁  ∈  ℕ  →  { 𝑓  ∣  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) }  ⊆  { 𝑓  ∣  ( 𝑓 ‘ 1 )  ≠  1 } ) | 
						
							| 92 |  | df-ne | ⊢ ( ( 𝑔 ‘ 1 )  ≠  1  ↔  ¬  ( 𝑔 ‘ 1 )  =  1 ) | 
						
							| 93 | 23 | neeq1d | ⊢ ( 𝑔  =  𝑓  →  ( ( 𝑔 ‘ 1 )  ≠  1  ↔  ( 𝑓 ‘ 1 )  ≠  1 ) ) | 
						
							| 94 | 92 93 | bitr3id | ⊢ ( 𝑔  =  𝑓  →  ( ¬  ( 𝑔 ‘ 1 )  =  1  ↔  ( 𝑓 ‘ 1 )  ≠  1 ) ) | 
						
							| 95 | 94 | cbvabv | ⊢ { 𝑔  ∣  ¬  ( 𝑔 ‘ 1 )  =  1 }  =  { 𝑓  ∣  ( 𝑓 ‘ 1 )  ≠  1 } | 
						
							| 96 | 91 3 95 | 3sstr4g | ⊢ ( 𝑁  ∈  ℕ  →  𝐴  ⊆  { 𝑔  ∣  ¬  ( 𝑔 ‘ 1 )  =  1 } ) | 
						
							| 97 |  | ssabral | ⊢ ( 𝐴  ⊆  { 𝑔  ∣  ¬  ( 𝑔 ‘ 1 )  =  1 }  ↔  ∀ 𝑔  ∈  𝐴 ¬  ( 𝑔 ‘ 1 )  =  1 ) | 
						
							| 98 | 96 97 | sylib | ⊢ ( 𝑁  ∈  ℕ  →  ∀ 𝑔  ∈  𝐴 ¬  ( 𝑔 ‘ 1 )  =  1 ) | 
						
							| 99 |  | rabeq0 | ⊢ ( { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  1 }  =  ∅  ↔  ∀ 𝑔  ∈  𝐴 ¬  ( 𝑔 ‘ 1 )  =  1 ) | 
						
							| 100 | 98 99 | sylibr | ⊢ ( 𝑁  ∈  ℕ  →  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  1 }  =  ∅ ) | 
						
							| 101 | 100 | fveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  1 } )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 102 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 103 | 1 2 | subfacf | ⊢ 𝑆 : ℕ0 ⟶ ℕ0 | 
						
							| 104 | 103 | ffvelcdmi | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑆 ‘ 𝑁 )  ∈  ℕ0 ) | 
						
							| 105 | 102 104 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑆 ‘ 𝑁 )  ∈  ℕ0 ) | 
						
							| 106 |  | nnm1nn0 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 107 | 103 | ffvelcdmi | ⊢ ( ( 𝑁  −  1 )  ∈  ℕ0  →  ( 𝑆 ‘ ( 𝑁  −  1 ) )  ∈  ℕ0 ) | 
						
							| 108 | 106 107 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑆 ‘ ( 𝑁  −  1 ) )  ∈  ℕ0 ) | 
						
							| 109 | 105 108 | nn0addcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) )  ∈  ℕ0 ) | 
						
							| 110 | 109 | nn0cnd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) )  ∈  ℂ ) | 
						
							| 111 | 110 | mul02d | ⊢ ( 𝑁  ∈  ℕ  →  ( 0  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  =  0 ) | 
						
							| 112 | 84 101 111 | 3eqtr4a | ⊢ ( 𝑁  ∈  ℕ  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  1 } )  =  ( 0  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) | 
						
							| 113 | 112 | a1d | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  1 } )  =  ( 0  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) | 
						
							| 114 |  | simplr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 115 | 114 13 | eleqtrdi | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  𝑚  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 116 |  | peano2fzr | ⊢ ( ( 𝑚  ∈  ( ℤ≥ ‘ 1 )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  𝑚  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 117 | 115 116 | sylancom | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  𝑚  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 118 | 117 | ex | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  𝑚  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 119 | 118 | imim1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑚  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } )  =  ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) )  →  ( ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } )  =  ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) ) | 
						
							| 120 |  | oveq1 | ⊢ ( ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } )  =  ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  →  ( ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } )  +  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } ) )  =  ( ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  +  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } ) ) ) | 
						
							| 121 |  | elfzp1 | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 1 )  →  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) )  ↔  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 )  ∨  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) ) ) ) | 
						
							| 122 | 115 121 | syl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) )  ↔  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 )  ∨  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) ) ) ) | 
						
							| 123 | 122 | rabbidv | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) ) }  =  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 )  ∨  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) ) } ) | 
						
							| 124 |  | unrab | ⊢ ( { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) }  ∪  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } )  =  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 )  ∨  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) ) } | 
						
							| 125 | 123 124 | eqtr4di | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) ) }  =  ( { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) }  ∪  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } ) ) | 
						
							| 126 | 125 | fveq2d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) ) } )  =  ( ♯ ‘ ( { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) }  ∪  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } ) ) ) | 
						
							| 127 |  | fzfi | ⊢ ( 1 ... ( 𝑁  +  1 ) )  ∈  Fin | 
						
							| 128 |  | deranglem | ⊢ ( ( 1 ... ( 𝑁  +  1 ) )  ∈  Fin  →  { 𝑓  ∣  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) }  ∈  Fin ) | 
						
							| 129 | 127 128 | ax-mp | ⊢ { 𝑓  ∣  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) }  ∈  Fin | 
						
							| 130 | 3 129 | eqeltri | ⊢ 𝐴  ∈  Fin | 
						
							| 131 |  | ssrab2 | ⊢ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) }  ⊆  𝐴 | 
						
							| 132 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) }  ⊆  𝐴 )  →  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) }  ∈  Fin ) | 
						
							| 133 | 130 131 132 | mp2an | ⊢ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) }  ∈  Fin | 
						
							| 134 |  | ssrab2 | ⊢ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) }  ⊆  𝐴 | 
						
							| 135 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) }  ⊆  𝐴 )  →  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) }  ∈  Fin ) | 
						
							| 136 | 130 134 135 | mp2an | ⊢ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) }  ∈  Fin | 
						
							| 137 |  | inrab | ⊢ ( { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) }  ∩  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } )  =  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 )  ∧  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) ) } | 
						
							| 138 |  | fzp1disj | ⊢ ( ( 1 ... 𝑚 )  ∩  { ( 𝑚  +  1 ) } )  =  ∅ | 
						
							| 139 | 42 | elsn | ⊢ ( ( 𝑔 ‘ 1 )  ∈  { ( 𝑚  +  1 ) }  ↔  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) ) | 
						
							| 140 |  | inelcm | ⊢ ( ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 )  ∧  ( 𝑔 ‘ 1 )  ∈  { ( 𝑚  +  1 ) } )  →  ( ( 1 ... 𝑚 )  ∩  { ( 𝑚  +  1 ) } )  ≠  ∅ ) | 
						
							| 141 | 139 140 | sylan2br | ⊢ ( ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 )  ∧  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) )  →  ( ( 1 ... 𝑚 )  ∩  { ( 𝑚  +  1 ) } )  ≠  ∅ ) | 
						
							| 142 | 141 | necon2bi | ⊢ ( ( ( 1 ... 𝑚 )  ∩  { ( 𝑚  +  1 ) } )  =  ∅  →  ¬  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 )  ∧  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) ) ) | 
						
							| 143 | 138 142 | ax-mp | ⊢ ¬  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 )  ∧  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) ) | 
						
							| 144 | 143 | rgenw | ⊢ ∀ 𝑔  ∈  𝐴 ¬  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 )  ∧  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) ) | 
						
							| 145 |  | rabeq0 | ⊢ ( { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 )  ∧  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) ) }  =  ∅  ↔  ∀ 𝑔  ∈  𝐴 ¬  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 )  ∧  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) ) ) | 
						
							| 146 | 144 145 | mpbir | ⊢ { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 )  ∧  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) ) }  =  ∅ | 
						
							| 147 | 137 146 | eqtri | ⊢ ( { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) }  ∩  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } )  =  ∅ | 
						
							| 148 |  | hashun | ⊢ ( ( { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) }  ∈  Fin  ∧  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) }  ∈  Fin  ∧  ( { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) }  ∩  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } )  =  ∅ )  →  ( ♯ ‘ ( { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) }  ∪  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } ) )  =  ( ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } )  +  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } ) ) ) | 
						
							| 149 | 133 136 147 148 | mp3an | ⊢ ( ♯ ‘ ( { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) }  ∪  { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } ) )  =  ( ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } )  +  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } ) ) | 
						
							| 150 | 126 149 | eqtrdi | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) ) } )  =  ( ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } )  +  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } ) ) ) | 
						
							| 151 |  | nncn | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℂ ) | 
						
							| 152 | 151 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  𝑚  ∈  ℂ ) | 
						
							| 153 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 154 | 153 | a1i | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  1  ∈  ℂ ) | 
						
							| 155 | 152 154 154 | addsubd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝑚  +  1 )  −  1 )  =  ( ( 𝑚  −  1 )  +  1 ) ) | 
						
							| 156 | 155 | oveq1d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ( 𝑚  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  =  ( ( ( 𝑚  −  1 )  +  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) | 
						
							| 157 |  | subcl | ⊢ ( ( 𝑚  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 𝑚  −  1 )  ∈  ℂ ) | 
						
							| 158 | 152 153 157 | sylancl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝑚  −  1 )  ∈  ℂ ) | 
						
							| 159 | 109 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) )  ∈  ℕ0 ) | 
						
							| 160 | 159 | nn0cnd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) )  ∈  ℂ ) | 
						
							| 161 | 158 154 160 | adddird | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ( 𝑚  −  1 )  +  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  =  ( ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  +  ( 1  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) | 
						
							| 162 | 160 | mullidd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 1  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  =  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) | 
						
							| 163 |  | exmidne | ⊢ ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1  ∨  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) | 
						
							| 164 |  | orcom | ⊢ ( ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1  ∨  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 )  ↔  ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1  ∨  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) ) | 
						
							| 165 | 163 164 | mpbi | ⊢ ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1  ∨  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) | 
						
							| 166 | 165 | biantru | ⊢ ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ↔  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1  ∨  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) ) ) | 
						
							| 167 |  | andi | ⊢ ( ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1  ∨  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) )  ↔  ( ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 )  ∨  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) ) ) | 
						
							| 168 | 166 167 | bitri | ⊢ ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ↔  ( ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 )  ∨  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) ) ) | 
						
							| 169 | 168 | rabbii | ⊢ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) }  =  { 𝑔  ∈  𝐴  ∣  ( ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 )  ∨  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) ) } | 
						
							| 170 |  | unrab | ⊢ ( { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) }  ∪  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) } )  =  { 𝑔  ∈  𝐴  ∣  ( ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 )  ∨  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) ) } | 
						
							| 171 | 169 170 | eqtr4i | ⊢ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) }  =  ( { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) }  ∪  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) } ) | 
						
							| 172 | 171 | fveq2i | ⊢ ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } )  =  ( ♯ ‘ ( { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) }  ∪  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) } ) ) | 
						
							| 173 |  | ssrab2 | ⊢ { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) }  ⊆  𝐴 | 
						
							| 174 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) }  ⊆  𝐴 )  →  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) }  ∈  Fin ) | 
						
							| 175 | 130 173 174 | mp2an | ⊢ { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) }  ∈  Fin | 
						
							| 176 |  | ssrab2 | ⊢ { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) }  ⊆  𝐴 | 
						
							| 177 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) }  ⊆  𝐴 )  →  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) }  ∈  Fin ) | 
						
							| 178 | 130 176 177 | mp2an | ⊢ { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) }  ∈  Fin | 
						
							| 179 |  | inrab | ⊢ ( { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) }  ∩  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) } )  =  { 𝑔  ∈  𝐴  ∣  ( ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 )  ∧  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) ) } | 
						
							| 180 |  | simpr | ⊢ ( ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 )  →  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) | 
						
							| 181 | 180 | necon3ai | ⊢ ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1  →  ¬  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) ) | 
						
							| 182 | 181 | adantl | ⊢ ( ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 )  →  ¬  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) ) | 
						
							| 183 |  | imnan | ⊢ ( ( ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 )  →  ¬  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) )  ↔  ¬  ( ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 )  ∧  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) ) ) | 
						
							| 184 | 182 183 | mpbi | ⊢ ¬  ( ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 )  ∧  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) ) | 
						
							| 185 | 184 | rgenw | ⊢ ∀ 𝑔  ∈  𝐴 ¬  ( ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 )  ∧  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) ) | 
						
							| 186 |  | rabeq0 | ⊢ ( { 𝑔  ∈  𝐴  ∣  ( ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 )  ∧  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) ) }  =  ∅  ↔  ∀ 𝑔  ∈  𝐴 ¬  ( ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 )  ∧  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) ) ) | 
						
							| 187 | 185 186 | mpbir | ⊢ { 𝑔  ∈  𝐴  ∣  ( ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 )  ∧  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) ) }  =  ∅ | 
						
							| 188 | 179 187 | eqtri | ⊢ ( { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) }  ∩  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) } )  =  ∅ | 
						
							| 189 |  | hashun | ⊢ ( ( { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) }  ∈  Fin  ∧  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) }  ∈  Fin  ∧  ( { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) }  ∩  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) } )  =  ∅ )  →  ( ♯ ‘ ( { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) }  ∪  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) } ) )  =  ( ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) } )  +  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) } ) ) ) | 
						
							| 190 | 175 178 188 189 | mp3an | ⊢ ( ♯ ‘ ( { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) }  ∪  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) } ) )  =  ( ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) } )  +  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) } ) ) | 
						
							| 191 | 172 190 | eqtri | ⊢ ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } )  =  ( ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) } )  +  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) } ) ) | 
						
							| 192 |  | simpll | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 193 |  | nnne0 | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ≠  0 ) | 
						
							| 194 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 195 | 194 | eqeq2i | ⊢ ( ( 𝑚  +  1 )  =  ( 0  +  1 )  ↔  ( 𝑚  +  1 )  =  1 ) | 
						
							| 196 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 197 |  | addcan2 | ⊢ ( ( 𝑚  ∈  ℂ  ∧  0  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑚  +  1 )  =  ( 0  +  1 )  ↔  𝑚  =  0 ) ) | 
						
							| 198 | 196 153 197 | mp3an23 | ⊢ ( 𝑚  ∈  ℂ  →  ( ( 𝑚  +  1 )  =  ( 0  +  1 )  ↔  𝑚  =  0 ) ) | 
						
							| 199 | 151 198 | syl | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑚  +  1 )  =  ( 0  +  1 )  ↔  𝑚  =  0 ) ) | 
						
							| 200 | 195 199 | bitr3id | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑚  +  1 )  =  1  ↔  𝑚  =  0 ) ) | 
						
							| 201 | 200 | necon3bbid | ⊢ ( 𝑚  ∈  ℕ  →  ( ¬  ( 𝑚  +  1 )  =  1  ↔  𝑚  ≠  0 ) ) | 
						
							| 202 | 193 201 | mpbird | ⊢ ( 𝑚  ∈  ℕ  →  ¬  ( 𝑚  +  1 )  =  1 ) | 
						
							| 203 | 202 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ¬  ( 𝑚  +  1 )  =  1 ) | 
						
							| 204 | 14 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 205 |  | elfzp12 | ⊢ ( ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 1 )  →  ( ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) )  ↔  ( ( 𝑚  +  1 )  =  1  ∨  ( 𝑚  +  1 )  ∈  ( ( 1  +  1 ) ... ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 206 | 204 205 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) )  ↔  ( ( 𝑚  +  1 )  =  1  ∨  ( 𝑚  +  1 )  ∈  ( ( 1  +  1 ) ... ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 207 | 206 | biimpa | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝑚  +  1 )  =  1  ∨  ( 𝑚  +  1 )  ∈  ( ( 1  +  1 ) ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 208 | 207 | ord | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ¬  ( 𝑚  +  1 )  =  1  →  ( 𝑚  +  1 )  ∈  ( ( 1  +  1 ) ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 209 | 203 208 | mpd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝑚  +  1 )  ∈  ( ( 1  +  1 ) ... ( 𝑁  +  1 ) ) ) | 
						
							| 210 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 211 | 210 | oveq1i | ⊢ ( 2 ... ( 𝑁  +  1 ) )  =  ( ( 1  +  1 ) ... ( 𝑁  +  1 ) ) | 
						
							| 212 | 209 211 | eleqtrrdi | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝑚  +  1 )  ∈  ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 213 |  | ovex | ⊢ ( 𝑚  +  1 )  ∈  V | 
						
							| 214 |  | eqid | ⊢ ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } )  =  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) | 
						
							| 215 |  | fveq1 | ⊢ ( 𝑔  =  ℎ  →  ( 𝑔 ‘ 1 )  =  ( ℎ ‘ 1 ) ) | 
						
							| 216 | 215 | eqeq1d | ⊢ ( 𝑔  =  ℎ  →  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ↔  ( ℎ ‘ 1 )  =  ( 𝑚  +  1 ) ) ) | 
						
							| 217 |  | fveq1 | ⊢ ( 𝑔  =  ℎ  →  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  ( ℎ ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 218 | 217 | neeq1d | ⊢ ( 𝑔  =  ℎ  →  ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1  ↔  ( ℎ ‘ ( 𝑚  +  1 ) )  ≠  1 ) ) | 
						
							| 219 | 216 218 | anbi12d | ⊢ ( 𝑔  =  ℎ  →  ( ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 )  ↔  ( ( ℎ ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( ℎ ‘ ( 𝑚  +  1 ) )  ≠  1 ) ) ) | 
						
							| 220 | 219 | cbvrabv | ⊢ { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) }  =  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( ℎ ‘ ( 𝑚  +  1 ) )  ≠  1 ) } | 
						
							| 221 |  | eqid | ⊢ ( (  I   ↾  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) )  ∪  { 〈 1 ,  ( 𝑚  +  1 ) 〉 ,  〈 ( 𝑚  +  1 ) ,  1 〉 } )  =  ( (  I   ↾  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) )  ∪  { 〈 1 ,  ( 𝑚  +  1 ) 〉 ,  〈 ( 𝑚  +  1 ) ,  1 〉 } ) | 
						
							| 222 |  | f1oeq1 | ⊢ ( 𝑔  =  𝑓  →  ( 𝑔 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  ↔  𝑓 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 223 |  | fveq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑔 ‘ 𝑧 )  =  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 224 |  | id | ⊢ ( 𝑧  =  𝑦  →  𝑧  =  𝑦 ) | 
						
							| 225 | 223 224 | neeq12d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝑔 ‘ 𝑧 )  ≠  𝑧  ↔  ( 𝑔 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 226 | 225 | cbvralvw | ⊢ ( ∀ 𝑧  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑔 ‘ 𝑧 )  ≠  𝑧  ↔  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑔 ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 227 |  | fveq1 | ⊢ ( 𝑔  =  𝑓  →  ( 𝑔 ‘ 𝑦 )  =  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 228 | 227 | neeq1d | ⊢ ( 𝑔  =  𝑓  →  ( ( 𝑔 ‘ 𝑦 )  ≠  𝑦  ↔  ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 229 | 228 | ralbidv | ⊢ ( 𝑔  =  𝑓  →  ( ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑔 ‘ 𝑦 )  ≠  𝑦  ↔  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 230 | 226 229 | bitrid | ⊢ ( 𝑔  =  𝑓  →  ( ∀ 𝑧  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑔 ‘ 𝑧 )  ≠  𝑧  ↔  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 231 | 222 230 | anbi12d | ⊢ ( 𝑔  =  𝑓  →  ( ( 𝑔 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑧  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑔 ‘ 𝑧 )  ≠  𝑧 )  ↔  ( 𝑓 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) ) ) | 
						
							| 232 | 231 | cbvabv | ⊢ { 𝑔  ∣  ( 𝑔 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑧  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑔 ‘ 𝑧 )  ≠  𝑧 ) }  =  { 𝑓  ∣  ( 𝑓 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } | 
						
							| 233 | 1 2 3 192 212 213 214 220 221 232 | subfacp1lem5 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) } )  =  ( 𝑆 ‘ 𝑁 ) ) | 
						
							| 234 | 217 | eqeq1d | ⊢ ( 𝑔  =  ℎ  →  ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1  ↔  ( ℎ ‘ ( 𝑚  +  1 ) )  =  1 ) ) | 
						
							| 235 | 216 234 | anbi12d | ⊢ ( 𝑔  =  ℎ  →  ( ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 )  ↔  ( ( ℎ ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( ℎ ‘ ( 𝑚  +  1 ) )  =  1 ) ) ) | 
						
							| 236 | 235 | cbvrabv | ⊢ { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) }  =  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( ℎ ‘ ( 𝑚  +  1 ) )  =  1 ) } | 
						
							| 237 |  | f1oeq1 | ⊢ ( 𝑔  =  𝑓  →  ( 𝑔 : ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) –1-1-onto→ ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } )  ↔  𝑓 : ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) –1-1-onto→ ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) ) ) | 
						
							| 238 | 225 | cbvralvw | ⊢ ( ∀ 𝑧  ∈  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) ( 𝑔 ‘ 𝑧 )  ≠  𝑧  ↔  ∀ 𝑦  ∈  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) ( 𝑔 ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 239 | 228 | ralbidv | ⊢ ( 𝑔  =  𝑓  →  ( ∀ 𝑦  ∈  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) ( 𝑔 ‘ 𝑦 )  ≠  𝑦  ↔  ∀ 𝑦  ∈  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 240 | 238 239 | bitrid | ⊢ ( 𝑔  =  𝑓  →  ( ∀ 𝑧  ∈  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) ( 𝑔 ‘ 𝑧 )  ≠  𝑧  ↔  ∀ 𝑦  ∈  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 241 | 237 240 | anbi12d | ⊢ ( 𝑔  =  𝑓  →  ( ( 𝑔 : ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) –1-1-onto→ ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } )  ∧  ∀ 𝑧  ∈  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) ( 𝑔 ‘ 𝑧 )  ≠  𝑧 )  ↔  ( 𝑓 : ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) –1-1-onto→ ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } )  ∧  ∀ 𝑦  ∈  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) ) ) | 
						
							| 242 | 241 | cbvabv | ⊢ { 𝑔  ∣  ( 𝑔 : ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) –1-1-onto→ ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } )  ∧  ∀ 𝑧  ∈  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) ( 𝑔 ‘ 𝑧 )  ≠  𝑧 ) }  =  { 𝑓  ∣  ( 𝑓 : ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) –1-1-onto→ ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } )  ∧  ∀ 𝑦  ∈  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { ( 𝑚  +  1 ) } ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } | 
						
							| 243 | 1 2 3 192 212 213 214 236 242 | subfacp1lem3 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) } )  =  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 244 | 233 243 | oveq12d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ≠  1 ) } )  +  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 )  ∧  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  1 ) } ) )  =  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) | 
						
							| 245 | 191 244 | eqtrid | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } )  =  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) | 
						
							| 246 | 162 245 | eqtr4d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 1  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  =  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } ) ) | 
						
							| 247 | 246 | oveq2d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  +  ( 1  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) )  =  ( ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  +  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } ) ) ) | 
						
							| 248 | 156 161 247 | 3eqtrd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ( 𝑚  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  =  ( ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  +  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } ) ) ) | 
						
							| 249 | 150 248 | eqeq12d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) ) } )  =  ( ( ( 𝑚  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  ↔  ( ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } )  +  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } ) )  =  ( ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  +  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  =  ( 𝑚  +  1 ) } ) ) ) ) | 
						
							| 250 | 120 249 | imbitrrid | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } )  =  ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) ) } )  =  ( ( ( 𝑚  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) | 
						
							| 251 | 250 | ex | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } )  =  ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) ) } )  =  ( ( ( 𝑚  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) ) | 
						
							| 252 | 251 | a2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  →  ( ( ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } )  =  ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) )  →  ( ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) ) } )  =  ( ( ( 𝑚  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) ) | 
						
							| 253 | 119 252 | syld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑚  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } )  =  ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) )  →  ( ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) ) } )  =  ( ( ( 𝑚  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) ) | 
						
							| 254 | 253 | expcom | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑚  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } )  =  ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) )  →  ( ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) ) } )  =  ( ( ( 𝑚  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) ) ) | 
						
							| 255 | 254 | a2d | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑁  ∈  ℕ  →  ( 𝑚  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... 𝑚 ) } )  =  ( ( 𝑚  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑚  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑚  +  1 ) ) } )  =  ( ( ( 𝑚  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) ) ) | 
						
							| 256 | 53 63 73 83 113 255 | nnind | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) } )  =  ( ( ( 𝑁  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) ) | 
						
							| 257 | 4 256 | mpcom | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) } )  =  ( ( ( 𝑁  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) ) | 
						
							| 258 | 34 257 | mpd | ⊢ ( 𝑁  ∈  ℕ  →  ( ♯ ‘ { 𝑔  ∈  𝐴  ∣  ( 𝑔 ‘ 1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) } )  =  ( ( ( 𝑁  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) | 
						
							| 259 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 260 |  | pncan | ⊢ ( ( 𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 261 | 259 153 260 | sylancl | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 262 | 261 | oveq1d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 𝑁  +  1 )  −  1 )  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) )  =  ( 𝑁  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) | 
						
							| 263 | 32 258 262 | 3eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑆 ‘ ( 𝑁  +  1 ) )  =  ( 𝑁  ·  ( ( 𝑆 ‘ 𝑁 )  +  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) ) ) |