| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derang.d | ⊢ 𝐷  =  ( 𝑥  ∈  Fin  ↦  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : 𝑥 –1-1-onto→ 𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) | 
						
							| 2 |  | subfac.n | ⊢ 𝑆  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) | 
						
							| 3 |  | subfacp1lem.a | ⊢ 𝐴  =  { 𝑓  ∣  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } | 
						
							| 4 |  | subfacp1lem1.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 5 |  | subfacp1lem1.m | ⊢ ( 𝜑  →  𝑀  ∈  ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 6 |  | subfacp1lem1.x | ⊢ 𝑀  ∈  V | 
						
							| 7 |  | subfacp1lem1.k | ⊢ 𝐾  =  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { 𝑀 } ) | 
						
							| 8 |  | subfacp1lem5.b | ⊢ 𝐵  =  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  𝑀  ∧  ( 𝑔 ‘ 𝑀 )  ≠  1 ) } | 
						
							| 9 |  | subfacp1lem5.f | ⊢ 𝐹  =  ( (  I   ↾  𝐾 )  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) | 
						
							| 10 |  | subfacp1lem5.c | ⊢ 𝐶  =  { 𝑓  ∣  ( 𝑓 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } | 
						
							| 11 |  | fzfi | ⊢ ( 1 ... ( 𝑁  +  1 ) )  ∈  Fin | 
						
							| 12 |  | deranglem | ⊢ ( ( 1 ... ( 𝑁  +  1 ) )  ∈  Fin  →  { 𝑓  ∣  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) }  ∈  Fin ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ { 𝑓  ∣  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) }  ∈  Fin | 
						
							| 14 | 3 13 | eqeltri | ⊢ 𝐴  ∈  Fin | 
						
							| 15 | 8 | ssrab3 | ⊢ 𝐵  ⊆  𝐴 | 
						
							| 16 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  𝐴 )  →  𝐵  ∈  Fin ) | 
						
							| 17 | 14 15 16 | mp2an | ⊢ 𝐵  ∈  Fin | 
						
							| 18 | 17 | elexi | ⊢ 𝐵  ∈  V | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 20 |  | eqid | ⊢ ( 𝑏  ∈  𝐵  ↦  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) )  =  ( 𝑏  ∈  𝐵  ↦  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 21 |  | f1oi | ⊢ (  I   ↾  𝐾 ) : 𝐾 –1-1-onto→ 𝐾 | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  (  I   ↾  𝐾 ) : 𝐾 –1-1-onto→ 𝐾 ) | 
						
							| 23 | 1 2 3 4 5 6 7 9 22 | subfacp1lem2a | ⊢ ( 𝜑  →  ( 𝐹 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ( 𝐹 ‘ 1 )  =  𝑀  ∧  ( 𝐹 ‘ 𝑀 )  =  1 ) ) | 
						
							| 24 | 23 | simp1d | ⊢ ( 𝜑  →  𝐹 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  𝐵 ) | 
						
							| 26 |  | fveq1 | ⊢ ( 𝑔  =  𝑏  →  ( 𝑔 ‘ 1 )  =  ( 𝑏 ‘ 1 ) ) | 
						
							| 27 | 26 | eqeq1d | ⊢ ( 𝑔  =  𝑏  →  ( ( 𝑔 ‘ 1 )  =  𝑀  ↔  ( 𝑏 ‘ 1 )  =  𝑀 ) ) | 
						
							| 28 |  | fveq1 | ⊢ ( 𝑔  =  𝑏  →  ( 𝑔 ‘ 𝑀 )  =  ( 𝑏 ‘ 𝑀 ) ) | 
						
							| 29 | 28 | neeq1d | ⊢ ( 𝑔  =  𝑏  →  ( ( 𝑔 ‘ 𝑀 )  ≠  1  ↔  ( 𝑏 ‘ 𝑀 )  ≠  1 ) ) | 
						
							| 30 | 27 29 | anbi12d | ⊢ ( 𝑔  =  𝑏  →  ( ( ( 𝑔 ‘ 1 )  =  𝑀  ∧  ( 𝑔 ‘ 𝑀 )  ≠  1 )  ↔  ( ( 𝑏 ‘ 1 )  =  𝑀  ∧  ( 𝑏 ‘ 𝑀 )  ≠  1 ) ) ) | 
						
							| 31 | 30 8 | elrab2 | ⊢ ( 𝑏  ∈  𝐵  ↔  ( 𝑏  ∈  𝐴  ∧  ( ( 𝑏 ‘ 1 )  =  𝑀  ∧  ( 𝑏 ‘ 𝑀 )  ≠  1 ) ) ) | 
						
							| 32 | 25 31 | sylib | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏  ∈  𝐴  ∧  ( ( 𝑏 ‘ 1 )  =  𝑀  ∧  ( 𝑏 ‘ 𝑀 )  ≠  1 ) ) ) | 
						
							| 33 | 32 | simpld | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  𝐴 ) | 
						
							| 34 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 35 |  | f1oeq1 | ⊢ ( 𝑓  =  𝑏  →  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ↔  𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 36 |  | fveq1 | ⊢ ( 𝑓  =  𝑏  →  ( 𝑓 ‘ 𝑦 )  =  ( 𝑏 ‘ 𝑦 ) ) | 
						
							| 37 | 36 | neeq1d | ⊢ ( 𝑓  =  𝑏  →  ( ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 38 | 37 | ralbidv | ⊢ ( 𝑓  =  𝑏  →  ( ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 39 | 35 38 | anbi12d | ⊢ ( 𝑓  =  𝑏  →  ( ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 )  ↔  ( 𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) ) ) | 
						
							| 40 | 34 39 3 | elab2 | ⊢ ( 𝑏  ∈  𝐴  ↔  ( 𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 41 | 33 40 | sylib | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 42 | 41 | simpld | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 43 |  | f1oco | ⊢ ( ( 𝐹 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝐹  ∘  𝑏 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 44 | 24 42 43 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝐹  ∘  𝑏 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 45 |  | f1of1 | ⊢ ( ( 𝐹  ∘  𝑏 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  →  ( 𝐹  ∘  𝑏 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 46 |  | df-f1 | ⊢ ( ( 𝐹  ∘  𝑏 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1→ ( 1 ... ( 𝑁  +  1 ) )  ↔  ( ( 𝐹  ∘  𝑏 ) : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) )  ∧  Fun  ◡ ( 𝐹  ∘  𝑏 ) ) ) | 
						
							| 47 | 46 | simprbi | ⊢ ( ( 𝐹  ∘  𝑏 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1→ ( 1 ... ( 𝑁  +  1 ) )  →  Fun  ◡ ( 𝐹  ∘  𝑏 ) ) | 
						
							| 48 | 44 45 47 | 3syl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  Fun  ◡ ( 𝐹  ∘  𝑏 ) ) | 
						
							| 49 |  | f1ofn | ⊢ ( ( 𝐹  ∘  𝑏 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  →  ( 𝐹  ∘  𝑏 )  Fn  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 50 |  | fnresdm | ⊢ ( ( 𝐹  ∘  𝑏 )  Fn  ( 1 ... ( 𝑁  +  1 ) )  →  ( ( 𝐹  ∘  𝑏 )  ↾  ( 1 ... ( 𝑁  +  1 ) ) )  =  ( 𝐹  ∘  𝑏 ) ) | 
						
							| 51 |  | f1oeq1 | ⊢ ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 1 ... ( 𝑁  +  1 ) ) )  =  ( 𝐹  ∘  𝑏 )  →  ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 1 ... ( 𝑁  +  1 ) ) ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ↔  ( 𝐹  ∘  𝑏 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 52 | 44 49 50 51 | 4syl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 1 ... ( 𝑁  +  1 ) ) ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ↔  ( 𝐹  ∘  𝑏 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 53 | 44 52 | mpbird | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝑏 )  ↾  ( 1 ... ( 𝑁  +  1 ) ) ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 54 |  | f1ofo | ⊢ ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 1 ... ( 𝑁  +  1 ) ) ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  →  ( ( 𝐹  ∘  𝑏 )  ↾  ( 1 ... ( 𝑁  +  1 ) ) ) : ( 1 ... ( 𝑁  +  1 ) ) –onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 55 | 53 54 | syl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝑏 )  ↾  ( 1 ... ( 𝑁  +  1 ) ) ) : ( 1 ... ( 𝑁  +  1 ) ) –onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 56 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 57 | 56 56 | f1osn | ⊢ { 〈 1 ,  1 〉 } : { 1 } –1-1-onto→ { 1 } | 
						
							| 58 | 44 49 | syl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝐹  ∘  𝑏 )  Fn  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 59 | 4 | peano2nnd | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 60 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 61 | 59 60 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 62 |  | eluzfz1 | ⊢ ( ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 63 | 61 62 | syl | ⊢ ( 𝜑  →  1  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  1  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 65 |  | fnressn | ⊢ ( ( ( 𝐹  ∘  𝑏 )  Fn  ( 1 ... ( 𝑁  +  1 ) )  ∧  1  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐹  ∘  𝑏 )  ↾  { 1 } )  =  { 〈 1 ,  ( ( 𝐹  ∘  𝑏 ) ‘ 1 ) 〉 } ) | 
						
							| 66 | 58 64 65 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝑏 )  ↾  { 1 } )  =  { 〈 1 ,  ( ( 𝐹  ∘  𝑏 ) ‘ 1 ) 〉 } ) | 
						
							| 67 |  | f1of | ⊢ ( 𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  →  𝑏 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 68 | 42 67 | syl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  𝑏 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 69 | 68 64 | fvco3d | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝑏 ) ‘ 1 )  =  ( 𝐹 ‘ ( 𝑏 ‘ 1 ) ) ) | 
						
							| 70 | 32 | simprd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝑏 ‘ 1 )  =  𝑀  ∧  ( 𝑏 ‘ 𝑀 )  ≠  1 ) ) | 
						
							| 71 | 70 | simpld | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏 ‘ 1 )  =  𝑀 ) | 
						
							| 72 | 71 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑏 ‘ 1 ) )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 73 | 23 | simp3d | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  =  1 ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑀 )  =  1 ) | 
						
							| 75 | 69 72 74 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝑏 ) ‘ 1 )  =  1 ) | 
						
							| 76 | 75 | opeq2d | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  〈 1 ,  ( ( 𝐹  ∘  𝑏 ) ‘ 1 ) 〉  =  〈 1 ,  1 〉 ) | 
						
							| 77 | 76 | sneqd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  { 〈 1 ,  ( ( 𝐹  ∘  𝑏 ) ‘ 1 ) 〉 }  =  { 〈 1 ,  1 〉 } ) | 
						
							| 78 | 66 77 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝑏 )  ↾  { 1 } )  =  { 〈 1 ,  1 〉 } ) | 
						
							| 79 | 78 | f1oeq1d | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( ( 𝐹  ∘  𝑏 )  ↾  { 1 } ) : { 1 } –1-1-onto→ { 1 }  ↔  { 〈 1 ,  1 〉 } : { 1 } –1-1-onto→ { 1 } ) ) | 
						
							| 80 | 57 79 | mpbiri | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝑏 )  ↾  { 1 } ) : { 1 } –1-1-onto→ { 1 } ) | 
						
							| 81 |  | f1ofo | ⊢ ( ( ( 𝐹  ∘  𝑏 )  ↾  { 1 } ) : { 1 } –1-1-onto→ { 1 }  →  ( ( 𝐹  ∘  𝑏 )  ↾  { 1 } ) : { 1 } –onto→ { 1 } ) | 
						
							| 82 | 80 81 | syl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝑏 )  ↾  { 1 } ) : { 1 } –onto→ { 1 } ) | 
						
							| 83 |  | resdif | ⊢ ( ( Fun  ◡ ( 𝐹  ∘  𝑏 )  ∧  ( ( 𝐹  ∘  𝑏 )  ↾  ( 1 ... ( 𝑁  +  1 ) ) ) : ( 1 ... ( 𝑁  +  1 ) ) –onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ( ( 𝐹  ∘  𝑏 )  ↾  { 1 } ) : { 1 } –onto→ { 1 } )  →  ( ( 𝐹  ∘  𝑏 )  ↾  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } ) ) : ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } ) ) | 
						
							| 84 | 48 55 82 83 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝑏 )  ↾  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } ) ) : ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } ) ) | 
						
							| 85 |  | fzsplit | ⊢ ( 1  ∈  ( 1 ... ( 𝑁  +  1 ) )  →  ( 1 ... ( 𝑁  +  1 ) )  =  ( ( 1 ... 1 )  ∪  ( ( 1  +  1 ) ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 86 | 63 85 | syl | ⊢ ( 𝜑  →  ( 1 ... ( 𝑁  +  1 ) )  =  ( ( 1 ... 1 )  ∪  ( ( 1  +  1 ) ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 87 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 88 |  | fzsn | ⊢ ( 1  ∈  ℤ  →  ( 1 ... 1 )  =  { 1 } ) | 
						
							| 89 | 87 88 | ax-mp | ⊢ ( 1 ... 1 )  =  { 1 } | 
						
							| 90 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 91 | 90 | oveq1i | ⊢ ( ( 1  +  1 ) ... ( 𝑁  +  1 ) )  =  ( 2 ... ( 𝑁  +  1 ) ) | 
						
							| 92 | 89 91 | uneq12i | ⊢ ( ( 1 ... 1 )  ∪  ( ( 1  +  1 ) ... ( 𝑁  +  1 ) ) )  =  ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 93 | 86 92 | eqtr2di | ⊢ ( 𝜑  →  ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) )  =  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 94 | 63 | snssd | ⊢ ( 𝜑  →  { 1 }  ⊆  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 95 |  | incom | ⊢ ( { 1 }  ∩  ( 2 ... ( 𝑁  +  1 ) ) )  =  ( ( 2 ... ( 𝑁  +  1 ) )  ∩  { 1 } ) | 
						
							| 96 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 97 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 98 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 99 | 97 98 | ltnlei | ⊢ ( 1  <  2  ↔  ¬  2  ≤  1 ) | 
						
							| 100 | 96 99 | mpbi | ⊢ ¬  2  ≤  1 | 
						
							| 101 |  | elfzle1 | ⊢ ( 1  ∈  ( 2 ... ( 𝑁  +  1 ) )  →  2  ≤  1 ) | 
						
							| 102 | 100 101 | mto | ⊢ ¬  1  ∈  ( 2 ... ( 𝑁  +  1 ) ) | 
						
							| 103 |  | disjsn | ⊢ ( ( ( 2 ... ( 𝑁  +  1 ) )  ∩  { 1 } )  =  ∅  ↔  ¬  1  ∈  ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 104 | 102 103 | mpbir | ⊢ ( ( 2 ... ( 𝑁  +  1 ) )  ∩  { 1 } )  =  ∅ | 
						
							| 105 | 95 104 | eqtri | ⊢ ( { 1 }  ∩  ( 2 ... ( 𝑁  +  1 ) ) )  =  ∅ | 
						
							| 106 |  | uneqdifeq | ⊢ ( ( { 1 }  ⊆  ( 1 ... ( 𝑁  +  1 ) )  ∧  ( { 1 }  ∩  ( 2 ... ( 𝑁  +  1 ) ) )  =  ∅ )  →  ( ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) )  =  ( 1 ... ( 𝑁  +  1 ) )  ↔  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } )  =  ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 107 | 94 105 106 | sylancl | ⊢ ( 𝜑  →  ( ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) )  =  ( 1 ... ( 𝑁  +  1 ) )  ↔  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } )  =  ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 108 | 93 107 | mpbid | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } )  =  ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } )  =  ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 110 |  | reseq2 | ⊢ ( ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } )  =  ( 2 ... ( 𝑁  +  1 ) )  →  ( ( 𝐹  ∘  𝑏 )  ↾  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } ) )  =  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 111 | 110 | f1oeq1d | ⊢ ( ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } )  =  ( 2 ... ( 𝑁  +  1 ) )  →  ( ( ( 𝐹  ∘  𝑏 )  ↾  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } ) ) : ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } )  ↔  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) : ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } ) ) ) | 
						
							| 112 |  | f1oeq2 | ⊢ ( ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } )  =  ( 2 ... ( 𝑁  +  1 ) )  →  ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) : ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } )  ↔  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } ) ) ) | 
						
							| 113 |  | f1oeq3 | ⊢ ( ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } )  =  ( 2 ... ( 𝑁  +  1 ) )  →  ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } )  ↔  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 114 | 111 112 113 | 3bitrd | ⊢ ( ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } )  =  ( 2 ... ( 𝑁  +  1 ) )  →  ( ( ( 𝐹  ∘  𝑏 )  ↾  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } ) ) : ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } )  ↔  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 115 | 109 114 | syl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( ( 𝐹  ∘  𝑏 )  ↾  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } ) ) : ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 } )  ↔  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 116 | 84 115 | mpbid | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 117 | 68 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  𝑏 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 118 |  | fzp1ss | ⊢ ( 1  ∈  ℤ  →  ( ( 1  +  1 ) ... ( 𝑁  +  1 ) )  ⊆  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 119 | 87 118 | ax-mp | ⊢ ( ( 1  +  1 ) ... ( 𝑁  +  1 ) )  ⊆  ( 1 ... ( 𝑁  +  1 ) ) | 
						
							| 120 | 91 119 | eqsstrri | ⊢ ( 2 ... ( 𝑁  +  1 ) )  ⊆  ( 1 ... ( 𝑁  +  1 ) ) | 
						
							| 121 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 122 | 120 121 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 123 | 117 122 | fvco3d | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑏 ‘ 𝑦 ) ) ) | 
						
							| 124 | 1 2 3 4 5 6 7 8 9 | subfacp1lem4 | ⊢ ( 𝜑  →  ◡ 𝐹  =  𝐹 ) | 
						
							| 125 | 124 | fveq1d | ⊢ ( 𝜑  →  ( ◡ 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 126 | 125 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( ◡ 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 127 | 70 | simprd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏 ‘ 𝑀 )  ≠  1 ) | 
						
							| 128 | 127 74 | neeqtrrd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏 ‘ 𝑀 )  ≠  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝑏 ‘ 𝑀 )  ≠  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 130 |  | fveq2 | ⊢ ( 𝑦  =  𝑀  →  ( 𝑏 ‘ 𝑦 )  =  ( 𝑏 ‘ 𝑀 ) ) | 
						
							| 131 |  | fveq2 | ⊢ ( 𝑦  =  𝑀  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 132 | 130 131 | neeq12d | ⊢ ( 𝑦  =  𝑀  →  ( ( 𝑏 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝑏 ‘ 𝑀 )  ≠  ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 133 | 129 132 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝑦  =  𝑀  →  ( 𝑏 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 134 | 120 | sseli | ⊢ ( 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) )  →  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 135 | 41 | simprd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 136 | 135 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 137 | 134 136 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 138 | 137 | adantrr | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) )  ∧  𝑦  ≠  𝑀 ) )  →  ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 139 | 7 | eleq2i | ⊢ ( 𝑦  ∈  𝐾  ↔  𝑦  ∈  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { 𝑀 } ) ) | 
						
							| 140 |  | eldifsn | ⊢ ( 𝑦  ∈  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { 𝑀 } )  ↔  ( 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) )  ∧  𝑦  ≠  𝑀 ) ) | 
						
							| 141 | 139 140 | bitri | ⊢ ( 𝑦  ∈  𝐾  ↔  ( 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) )  ∧  𝑦  ≠  𝑀 ) ) | 
						
							| 142 | 1 2 3 4 5 6 7 9 22 | subfacp1lem2b | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐾 )  →  ( 𝐹 ‘ 𝑦 )  =  ( (  I   ↾  𝐾 ) ‘ 𝑦 ) ) | 
						
							| 143 |  | fvresi | ⊢ ( 𝑦  ∈  𝐾  →  ( (  I   ↾  𝐾 ) ‘ 𝑦 )  =  𝑦 ) | 
						
							| 144 | 143 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐾 )  →  ( (  I   ↾  𝐾 ) ‘ 𝑦 )  =  𝑦 ) | 
						
							| 145 | 142 144 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐾 )  →  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) | 
						
							| 146 | 141 145 | sylan2br | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) )  ∧  𝑦  ≠  𝑀 ) )  →  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) | 
						
							| 147 | 146 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) )  ∧  𝑦  ≠  𝑀 ) )  →  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) | 
						
							| 148 | 138 147 | neeqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) )  ∧  𝑦  ≠  𝑀 ) )  →  ( 𝑏 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 149 | 148 | expr | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝑦  ≠  𝑀  →  ( 𝑏 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 150 | 133 149 | pm2.61dne | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝑏 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 151 | 150 | necomd | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝐹 ‘ 𝑦 )  ≠  ( 𝑏 ‘ 𝑦 ) ) | 
						
							| 152 | 126 151 | eqnetrd | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( ◡ 𝐹 ‘ 𝑦 )  ≠  ( 𝑏 ‘ 𝑦 ) ) | 
						
							| 153 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  𝐹 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 154 |  | ffvelcdm | ⊢ ( ( 𝑏 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝑏 ‘ 𝑦 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 155 | 68 134 154 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝑏 ‘ 𝑦 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 156 |  | f1ocnvfv | ⊢ ( ( 𝐹 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ( 𝑏 ‘ 𝑦 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐹 ‘ ( 𝑏 ‘ 𝑦 ) )  =  𝑦  →  ( ◡ 𝐹 ‘ 𝑦 )  =  ( 𝑏 ‘ 𝑦 ) ) ) | 
						
							| 157 | 153 155 156 | syl2an2r | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐹 ‘ ( 𝑏 ‘ 𝑦 ) )  =  𝑦  →  ( ◡ 𝐹 ‘ 𝑦 )  =  ( 𝑏 ‘ 𝑦 ) ) ) | 
						
							| 158 | 157 | necon3d | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( ( ◡ 𝐹 ‘ 𝑦 )  ≠  ( 𝑏 ‘ 𝑦 )  →  ( 𝐹 ‘ ( 𝑏 ‘ 𝑦 ) )  ≠  𝑦 ) ) | 
						
							| 159 | 152 158 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝐹 ‘ ( 𝑏 ‘ 𝑦 ) )  ≠  𝑦 ) | 
						
							| 160 | 123 159 | eqnetrd | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 161 | 160 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 162 |  | f1of | ⊢ ( (  I   ↾  𝐾 ) : 𝐾 –1-1-onto→ 𝐾  →  (  I   ↾  𝐾 ) : 𝐾 ⟶ 𝐾 ) | 
						
							| 163 | 21 162 | ax-mp | ⊢ (  I   ↾  𝐾 ) : 𝐾 ⟶ 𝐾 | 
						
							| 164 |  | fzfi | ⊢ ( 2 ... ( 𝑁  +  1 ) )  ∈  Fin | 
						
							| 165 |  | difexg | ⊢ ( ( 2 ... ( 𝑁  +  1 ) )  ∈  Fin  →  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { 𝑀 } )  ∈  V ) | 
						
							| 166 | 164 165 | ax-mp | ⊢ ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { 𝑀 } )  ∈  V | 
						
							| 167 | 7 166 | eqeltri | ⊢ 𝐾  ∈  V | 
						
							| 168 |  | fex | ⊢ ( ( (  I   ↾  𝐾 ) : 𝐾 ⟶ 𝐾  ∧  𝐾  ∈  V )  →  (  I   ↾  𝐾 )  ∈  V ) | 
						
							| 169 | 163 167 168 | mp2an | ⊢ (  I   ↾  𝐾 )  ∈  V | 
						
							| 170 |  | prex | ⊢ { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 }  ∈  V | 
						
							| 171 | 169 170 | unex | ⊢ ( (  I   ↾  𝐾 )  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  ∈  V | 
						
							| 172 | 9 171 | eqeltri | ⊢ 𝐹  ∈  V | 
						
							| 173 | 172 34 | coex | ⊢ ( 𝐹  ∘  𝑏 )  ∈  V | 
						
							| 174 | 173 | resex | ⊢ ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) )  ∈  V | 
						
							| 175 |  | f1oeq1 | ⊢ ( 𝑓  =  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝑓 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  ↔  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 176 |  | fveq1 | ⊢ ( 𝑓  =  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝑓 ‘ 𝑦 )  =  ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) ‘ 𝑦 ) ) | 
						
							| 177 |  | fvres | ⊢ ( 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) )  →  ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) ‘ 𝑦 )  =  ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 ) ) | 
						
							| 178 | 176 177 | sylan9eq | ⊢ ( ( 𝑓  =  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝑓 ‘ 𝑦 )  =  ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 ) ) | 
						
							| 179 | 178 | neeq1d | ⊢ ( ( 𝑓  =  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 180 | 179 | ralbidva | ⊢ ( 𝑓  =  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 181 | 175 180 | anbi12d | ⊢ ( 𝑓  =  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝑓 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 )  ↔  ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  ≠  𝑦 ) ) ) | 
						
							| 182 | 174 181 10 | elab2 | ⊢ ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) )  ∈  𝐶  ↔  ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 183 | 116 161 182 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) )  ∈  𝐶 ) | 
						
							| 184 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  𝑐  ∈  𝐶 ) | 
						
							| 185 |  | vex | ⊢ 𝑐  ∈  V | 
						
							| 186 |  | f1oeq1 | ⊢ ( 𝑓  =  𝑐  →  ( 𝑓 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  ↔  𝑐 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 187 |  | fveq1 | ⊢ ( 𝑓  =  𝑐  →  ( 𝑓 ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) | 
						
							| 188 | 187 | neeq1d | ⊢ ( 𝑓  =  𝑐  →  ( ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ( 𝑐 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 189 | 188 | ralbidv | ⊢ ( 𝑓  =  𝑐  →  ( ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑐 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 190 | 186 189 | anbi12d | ⊢ ( 𝑓  =  𝑐  →  ( ( 𝑓 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 )  ↔  ( 𝑐 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑐 ‘ 𝑦 )  ≠  𝑦 ) ) ) | 
						
							| 191 | 185 190 10 | elab2 | ⊢ ( 𝑐  ∈  𝐶  ↔  ( 𝑐 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑐 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 192 | 184 191 | sylib | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝑐 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑐 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 193 | 192 | simpld | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  𝑐 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 194 |  | f1oun | ⊢ ( ( ( { 〈 1 ,  1 〉 } : { 1 } –1-1-onto→ { 1 }  ∧  𝑐 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) ) )  ∧  ( ( { 1 }  ∩  ( 2 ... ( 𝑁  +  1 ) ) )  =  ∅  ∧  ( { 1 }  ∩  ( 2 ... ( 𝑁  +  1 ) ) )  =  ∅ ) )  →  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) –1-1-onto→ ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 195 | 105 105 194 | mpanr12 | ⊢ ( ( { 〈 1 ,  1 〉 } : { 1 } –1-1-onto→ { 1 }  ∧  𝑐 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) ) )  →  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) –1-1-onto→ ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 196 | 57 193 195 | sylancr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) –1-1-onto→ ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 197 |  | f1oeq2 | ⊢ ( ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) )  =  ( 1 ... ( 𝑁  +  1 ) )  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) –1-1-onto→ ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) )  ↔  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 198 |  | f1oeq3 | ⊢ ( ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) )  =  ( 1 ... ( 𝑁  +  1 ) )  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) )  ↔  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 199 | 197 198 | bitrd | ⊢ ( ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) )  =  ( 1 ... ( 𝑁  +  1 ) )  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) –1-1-onto→ ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) )  ↔  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 200 | 93 199 | syl | ⊢ ( 𝜑  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) –1-1-onto→ ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) )  ↔  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 201 | 200 | biimpa | ⊢ ( ( 𝜑  ∧  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) –1-1-onto→ ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) )  →  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 202 | 196 201 | syldan | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 203 |  | f1oco | ⊢ ( ( 𝐹 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 204 | 24 202 203 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 205 |  | f1of | ⊢ ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  →  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 206 | 202 205 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 207 |  | fvco3 | ⊢ ( ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 𝑦 )  =  ( 𝐹 ‘ ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) ) ) | 
						
							| 208 | 206 207 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 𝑦 )  =  ( 𝐹 ‘ ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) ) ) | 
						
							| 209 | 125 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ◡ 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 210 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 211 | 93 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) )  =  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 212 | 210 211 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  𝑦  ∈  ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 213 |  | elun | ⊢ ( 𝑦  ∈  ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) )  ↔  ( 𝑦  ∈  { 1 }  ∨  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 214 | 212 213 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝑦  ∈  { 1 }  ∨  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 215 |  | nelne2 | ⊢ ( ( 𝑀  ∈  ( 2 ... ( 𝑁  +  1 ) )  ∧  ¬  1  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  𝑀  ≠  1 ) | 
						
							| 216 | 5 102 215 | sylancl | ⊢ ( 𝜑  →  𝑀  ≠  1 ) | 
						
							| 217 | 216 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  𝑀  ≠  1 ) | 
						
							| 218 | 23 | simp2d | ⊢ ( 𝜑  →  ( 𝐹 ‘ 1 )  =  𝑀 ) | 
						
							| 219 | 218 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝐹 ‘ 1 )  =  𝑀 ) | 
						
							| 220 |  | f1ofun | ⊢ ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) –1-1-onto→ ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) )  →  Fun  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) | 
						
							| 221 | 196 220 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  Fun  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) | 
						
							| 222 |  | ssun1 | ⊢ { 〈 1 ,  1 〉 }  ⊆  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) | 
						
							| 223 | 56 | snid | ⊢ 1  ∈  { 1 } | 
						
							| 224 | 56 | dmsnop | ⊢ dom  { 〈 1 ,  1 〉 }  =  { 1 } | 
						
							| 225 | 223 224 | eleqtrri | ⊢ 1  ∈  dom  { 〈 1 ,  1 〉 } | 
						
							| 226 |  | funssfv | ⊢ ( ( Fun  ( { 〈 1 ,  1 〉 }  ∪  𝑐 )  ∧  { 〈 1 ,  1 〉 }  ⊆  ( { 〈 1 ,  1 〉 }  ∪  𝑐 )  ∧  1  ∈  dom  { 〈 1 ,  1 〉 } )  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 1 )  =  ( { 〈 1 ,  1 〉 } ‘ 1 ) ) | 
						
							| 227 | 222 225 226 | mp3an23 | ⊢ ( Fun  ( { 〈 1 ,  1 〉 }  ∪  𝑐 )  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 1 )  =  ( { 〈 1 ,  1 〉 } ‘ 1 ) ) | 
						
							| 228 | 221 227 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 1 )  =  ( { 〈 1 ,  1 〉 } ‘ 1 ) ) | 
						
							| 229 | 56 56 | fvsn | ⊢ ( { 〈 1 ,  1 〉 } ‘ 1 )  =  1 | 
						
							| 230 | 228 229 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 1 )  =  1 ) | 
						
							| 231 | 217 219 230 | 3netr4d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝐹 ‘ 1 )  ≠  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 1 ) ) | 
						
							| 232 |  | elsni | ⊢ ( 𝑦  ∈  { 1 }  →  𝑦  =  1 ) | 
						
							| 233 | 232 | fveq2d | ⊢ ( 𝑦  ∈  { 1 }  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 234 | 232 | fveq2d | ⊢ ( 𝑦  ∈  { 1 }  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 1 ) ) | 
						
							| 235 | 233 234 | neeq12d | ⊢ ( 𝑦  ∈  { 1 }  →  ( ( 𝐹 ‘ 𝑦 )  ≠  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  ↔  ( 𝐹 ‘ 1 )  ≠  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 1 ) ) ) | 
						
							| 236 | 231 235 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝑦  ∈  { 1 }  →  ( 𝐹 ‘ 𝑦 )  ≠  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) ) ) | 
						
							| 237 | 236 | imp | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  { 1 } )  →  ( 𝐹 ‘ 𝑦 )  ≠  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) ) | 
						
							| 238 | 221 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  Fun  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) | 
						
							| 239 |  | ssun2 | ⊢ 𝑐  ⊆  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) | 
						
							| 240 | 239 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  𝑐  ⊆  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) | 
						
							| 241 |  | f1odm | ⊢ ( 𝑐 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  →  dom  𝑐  =  ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 242 | 193 241 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  dom  𝑐  =  ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 243 | 242 | eleq2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝑦  ∈  dom  𝑐  ↔  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 244 | 243 | biimpar | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  𝑦  ∈  dom  𝑐 ) | 
						
							| 245 |  | funssfv | ⊢ ( ( Fun  ( { 〈 1 ,  1 〉 }  ∪  𝑐 )  ∧  𝑐  ⊆  ( { 〈 1 ,  1 〉 }  ∪  𝑐 )  ∧  𝑦  ∈  dom  𝑐 )  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) | 
						
							| 246 | 238 240 244 245 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) | 
						
							| 247 |  | f1of | ⊢ ( 𝑐 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  →  𝑐 : ( 2 ... ( 𝑁  +  1 ) ) ⟶ ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 248 | 193 247 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  𝑐 : ( 2 ... ( 𝑁  +  1 ) ) ⟶ ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 249 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  𝑀  ∈  ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 250 | 248 249 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝑐 ‘ 𝑀 )  ∈  ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 251 |  | nelne2 | ⊢ ( ( ( 𝑐 ‘ 𝑀 )  ∈  ( 2 ... ( 𝑁  +  1 ) )  ∧  ¬  1  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝑐 ‘ 𝑀 )  ≠  1 ) | 
						
							| 252 | 250 102 251 | sylancl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝑐 ‘ 𝑀 )  ≠  1 ) | 
						
							| 253 | 252 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝑐 ‘ 𝑀 )  ≠  1 ) | 
						
							| 254 | 73 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝐹 ‘ 𝑀 )  =  1 ) | 
						
							| 255 | 253 254 | neeqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝑐 ‘ 𝑀 )  ≠  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 256 |  | fveq2 | ⊢ ( 𝑦  =  𝑀  →  ( 𝑐 ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑀 ) ) | 
						
							| 257 | 256 131 | neeq12d | ⊢ ( 𝑦  =  𝑀  →  ( ( 𝑐 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝑐 ‘ 𝑀 )  ≠  ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 258 | 255 257 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝑦  =  𝑀  →  ( 𝑐 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 259 | 192 | simprd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑐 ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 260 | 259 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝑐 ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 261 | 260 | adantrr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  ( 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) )  ∧  𝑦  ≠  𝑀 ) )  →  ( 𝑐 ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 262 | 146 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  ( 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) )  ∧  𝑦  ≠  𝑀 ) )  →  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) | 
						
							| 263 | 261 262 | neeqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  ( 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) )  ∧  𝑦  ≠  𝑀 ) )  →  ( 𝑐 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 264 | 263 | expr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝑦  ≠  𝑀  →  ( 𝑐 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 265 | 258 264 | pm2.61dne | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝑐 ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 266 | 246 265 | eqnetrd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  ≠  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 267 | 266 | necomd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( 𝐹 ‘ 𝑦 )  ≠  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) ) | 
						
							| 268 | 237 267 | jaodan | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  ( 𝑦  ∈  { 1 }  ∨  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ) )  →  ( 𝐹 ‘ 𝑦 )  ≠  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) ) | 
						
							| 269 | 214 268 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝐹 ‘ 𝑦 )  ≠  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) ) | 
						
							| 270 | 209 269 | eqnetrd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ◡ 𝐹 ‘ 𝑦 )  ≠  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) ) | 
						
							| 271 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  𝐹 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 272 | 206 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 273 |  | f1ocnvfv | ⊢ ( ( 𝐹 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐹 ‘ ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) )  =  𝑦  →  ( ◡ 𝐹 ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) ) ) | 
						
							| 274 | 271 272 273 | syl2an2r | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐹 ‘ ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) )  =  𝑦  →  ( ◡ 𝐹 ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) ) ) | 
						
							| 275 | 274 | necon3d | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( ◡ 𝐹 ‘ 𝑦 )  ≠  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  →  ( 𝐹 ‘ ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) )  ≠  𝑦 ) ) | 
						
							| 276 | 270 275 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝐹 ‘ ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) )  ≠  𝑦 ) | 
						
							| 277 | 208 276 | eqnetrd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 278 | 277 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 279 |  | snex | ⊢ { 〈 1 ,  1 〉 }  ∈  V | 
						
							| 280 | 279 185 | unex | ⊢ ( { 〈 1 ,  1 〉 }  ∪  𝑐 )  ∈  V | 
						
							| 281 | 172 280 | coex | ⊢ ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  ∈  V | 
						
							| 282 |  | f1oeq1 | ⊢ ( 𝑓  =  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  →  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ↔  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 283 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  →  ( 𝑓 ‘ 𝑦 )  =  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 𝑦 ) ) | 
						
							| 284 | 283 | neeq1d | ⊢ ( 𝑓  =  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  →  ( ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 285 | 284 | ralbidv | ⊢ ( 𝑓  =  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  →  ( ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 286 | 282 285 | anbi12d | ⊢ ( 𝑓  =  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  →  ( ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 )  ↔  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 𝑦 )  ≠  𝑦 ) ) ) | 
						
							| 287 | 281 286 3 | elab2 | ⊢ ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  ∈  𝐴  ↔  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 288 | 204 278 287 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  ∈  𝐴 ) | 
						
							| 289 | 63 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  1  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 290 | 206 289 | fvco3d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 1 )  =  ( 𝐹 ‘ ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 1 ) ) ) | 
						
							| 291 | 230 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝐹 ‘ ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 1 ) )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 292 | 290 291 219 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 1 )  =  𝑀 ) | 
						
							| 293 | 120 5 | sselid | ⊢ ( 𝜑  →  𝑀  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 294 | 293 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  𝑀  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 295 | 206 294 | fvco3d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 𝑀 )  =  ( 𝐹 ‘ ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑀 ) ) ) | 
						
							| 296 | 239 | a1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  𝑐  ⊆  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) | 
						
							| 297 | 249 242 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  𝑀  ∈  dom  𝑐 ) | 
						
							| 298 |  | funssfv | ⊢ ( ( Fun  ( { 〈 1 ,  1 〉 }  ∪  𝑐 )  ∧  𝑐  ⊆  ( { 〈 1 ,  1 〉 }  ∪  𝑐 )  ∧  𝑀  ∈  dom  𝑐 )  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑀 )  =  ( 𝑐 ‘ 𝑀 ) ) | 
						
							| 299 | 221 296 297 298 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑀 )  =  ( 𝑐 ‘ 𝑀 ) ) | 
						
							| 300 | 299 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝐹 ‘ ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑀 ) )  =  ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) ) ) | 
						
							| 301 | 295 300 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 𝑀 )  =  ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) ) ) | 
						
							| 302 | 124 | fveq1d | ⊢ ( 𝜑  →  ( ◡ 𝐹 ‘ 1 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 303 | 302 218 | eqtrd | ⊢ ( 𝜑  →  ( ◡ 𝐹 ‘ 1 )  =  𝑀 ) | 
						
							| 304 | 303 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ◡ 𝐹 ‘ 1 )  =  𝑀 ) | 
						
							| 305 |  | id | ⊢ ( 𝑦  =  𝑀  →  𝑦  =  𝑀 ) | 
						
							| 306 | 256 305 | neeq12d | ⊢ ( 𝑦  =  𝑀  →  ( ( 𝑐 ‘ 𝑦 )  ≠  𝑦  ↔  ( 𝑐 ‘ 𝑀 )  ≠  𝑀 ) ) | 
						
							| 307 | 306 259 249 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝑐 ‘ 𝑀 )  ≠  𝑀 ) | 
						
							| 308 | 307 | necomd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  𝑀  ≠  ( 𝑐 ‘ 𝑀 ) ) | 
						
							| 309 | 304 308 | eqnetrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ◡ 𝐹 ‘ 1 )  ≠  ( 𝑐 ‘ 𝑀 ) ) | 
						
							| 310 | 120 250 | sselid | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝑐 ‘ 𝑀 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 311 |  | f1ocnvfv | ⊢ ( ( 𝐹 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ( 𝑐 ‘ 𝑀 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) )  =  1  →  ( ◡ 𝐹 ‘ 1 )  =  ( 𝑐 ‘ 𝑀 ) ) ) | 
						
							| 312 | 24 310 311 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) )  =  1  →  ( ◡ 𝐹 ‘ 1 )  =  ( 𝑐 ‘ 𝑀 ) ) ) | 
						
							| 313 | 312 | necon3d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ( ◡ 𝐹 ‘ 1 )  ≠  ( 𝑐 ‘ 𝑀 )  →  ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) )  ≠  1 ) ) | 
						
							| 314 | 309 313 | mpd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝐹 ‘ ( 𝑐 ‘ 𝑀 ) )  ≠  1 ) | 
						
							| 315 | 301 314 | eqnetrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 𝑀 )  ≠  1 ) | 
						
							| 316 | 292 315 | jca | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 1 )  =  𝑀  ∧  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 𝑀 )  ≠  1 ) ) | 
						
							| 317 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  →  ( 𝑔 ‘ 1 )  =  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 1 ) ) | 
						
							| 318 | 317 | eqeq1d | ⊢ ( 𝑔  =  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  →  ( ( 𝑔 ‘ 1 )  =  𝑀  ↔  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 1 )  =  𝑀 ) ) | 
						
							| 319 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  →  ( 𝑔 ‘ 𝑀 )  =  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 𝑀 ) ) | 
						
							| 320 | 319 | neeq1d | ⊢ ( 𝑔  =  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  →  ( ( 𝑔 ‘ 𝑀 )  ≠  1  ↔  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 𝑀 )  ≠  1 ) ) | 
						
							| 321 | 318 320 | anbi12d | ⊢ ( 𝑔  =  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  →  ( ( ( 𝑔 ‘ 1 )  =  𝑀  ∧  ( 𝑔 ‘ 𝑀 )  ≠  1 )  ↔  ( ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 1 )  =  𝑀  ∧  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 𝑀 )  ≠  1 ) ) ) | 
						
							| 322 | 321 8 | elrab2 | ⊢ ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  ∈  𝐵  ↔  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  ∈  𝐴  ∧  ( ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 1 )  =  𝑀  ∧  ( ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ‘ 𝑀 )  ≠  1 ) ) ) | 
						
							| 323 | 288 316 322 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  ∈  𝐵 ) | 
						
							| 324 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  𝐹 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 325 |  | f1of1 | ⊢ ( 𝐹 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  →  𝐹 : ( 1 ... ( 𝑁  +  1 ) ) –1-1→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 326 | 324 325 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  𝐹 : ( 1 ... ( 𝑁  +  1 ) ) –1-1→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 327 |  | f1of | ⊢ ( 𝐹 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  →  𝐹 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 328 | 324 327 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  𝐹 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 329 | 68 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  𝑏 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 330 | 328 329 | fcod | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( 𝐹  ∘  𝑏 ) : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 331 | 206 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 332 |  | cocan1 | ⊢ ( ( 𝐹 : ( 1 ... ( 𝑁  +  1 ) ) –1-1→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ( 𝐹  ∘  𝑏 ) : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) )  ∧  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐹  ∘  ( 𝐹  ∘  𝑏 ) )  =  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  ↔  ( 𝐹  ∘  𝑏 )  =  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ) | 
						
							| 333 | 326 330 331 332 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ( 𝐹  ∘  ( 𝐹  ∘  𝑏 ) )  =  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  ↔  ( 𝐹  ∘  𝑏 )  =  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ) | 
						
							| 334 |  | coass | ⊢ ( ( 𝐹  ∘  𝐹 )  ∘  𝑏 )  =  ( 𝐹  ∘  ( 𝐹  ∘  𝑏 ) ) | 
						
							| 335 | 124 | coeq1d | ⊢ ( 𝜑  →  ( ◡ 𝐹  ∘  𝐹 )  =  ( 𝐹  ∘  𝐹 ) ) | 
						
							| 336 |  | f1ococnv1 | ⊢ ( 𝐹 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  →  ( ◡ 𝐹  ∘  𝐹 )  =  (  I   ↾  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 337 | 24 336 | syl | ⊢ ( 𝜑  →  ( ◡ 𝐹  ∘  𝐹 )  =  (  I   ↾  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 338 | 335 337 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐹 )  =  (  I   ↾  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 339 | 338 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( 𝐹  ∘  𝐹 )  =  (  I   ↾  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 340 | 339 | coeq1d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ( 𝐹  ∘  𝐹 )  ∘  𝑏 )  =  ( (  I   ↾  ( 1 ... ( 𝑁  +  1 ) ) )  ∘  𝑏 ) ) | 
						
							| 341 |  | fcoi2 | ⊢ ( 𝑏 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) )  →  ( (  I   ↾  ( 1 ... ( 𝑁  +  1 ) ) )  ∘  𝑏 )  =  𝑏 ) | 
						
							| 342 | 329 341 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( (  I   ↾  ( 1 ... ( 𝑁  +  1 ) ) )  ∘  𝑏 )  =  𝑏 ) | 
						
							| 343 | 340 342 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ( 𝐹  ∘  𝐹 )  ∘  𝑏 )  =  𝑏 ) | 
						
							| 344 | 334 343 | eqtr3id | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( 𝐹  ∘  ( 𝐹  ∘  𝑏 ) )  =  𝑏 ) | 
						
							| 345 | 344 | eqeq1d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ( 𝐹  ∘  ( 𝐹  ∘  𝑏 ) )  =  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  ↔  𝑏  =  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ) ) ) | 
						
							| 346 | 75 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ( 𝐹  ∘  𝑏 ) ‘ 1 )  =  1 ) | 
						
							| 347 | 230 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 1 )  =  1 ) | 
						
							| 348 | 346 347 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ( 𝐹  ∘  𝑏 ) ‘ 1 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 1 ) ) | 
						
							| 349 |  | fveq2 | ⊢ ( 𝑦  =  1  →  ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( 𝐹  ∘  𝑏 ) ‘ 1 ) ) | 
						
							| 350 |  | fveq2 | ⊢ ( 𝑦  =  1  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 1 ) ) | 
						
							| 351 | 349 350 | eqeq12d | ⊢ ( 𝑦  =  1  →  ( ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  ↔  ( ( 𝐹  ∘  𝑏 ) ‘ 1 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 1 ) ) ) | 
						
							| 352 | 56 351 | ralsn | ⊢ ( ∀ 𝑦  ∈  { 1 } ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  ↔  ( ( 𝐹  ∘  𝑏 ) ‘ 1 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 1 ) ) | 
						
							| 353 | 348 352 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ∀ 𝑦  ∈  { 1 } ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) ) | 
						
							| 354 | 353 | biantrurd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  ↔  ( ∀ 𝑦  ∈  { 1 } ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  ∧  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) ) ) ) | 
						
							| 355 |  | ralunb | ⊢ ( ∀ 𝑦  ∈  ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  ↔  ( ∀ 𝑦  ∈  { 1 } ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  ∧  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) ) ) | 
						
							| 356 | 354 355 | bitr4di | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) ) ) | 
						
							| 357 | 177 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) ‘ 𝑦 )  =  ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 ) ) | 
						
							| 358 | 357 | eqcomd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) ‘ 𝑦 ) ) | 
						
							| 359 | 246 | adantlrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) | 
						
							| 360 | 358 359 | eqeq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  ∧  𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  ↔  ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 361 | 360 | ralbidva | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 362 | 93 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) )  =  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 363 | 362 | raleqdv | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ∀ 𝑦  ∈  ( { 1 }  ∪  ( 2 ... ( 𝑁  +  1 ) ) ) ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) ) ) | 
						
							| 364 | 356 361 363 | 3bitr3rd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 365 | 58 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( 𝐹  ∘  𝑏 )  Fn  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 366 | 202 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 367 |  | f1ofn | ⊢ ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  →  ( { 〈 1 ,  1 〉 }  ∪  𝑐 )  Fn  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 368 | 366 367 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( { 〈 1 ,  1 〉 }  ∪  𝑐 )  Fn  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 369 |  | eqfnfv | ⊢ ( ( ( 𝐹  ∘  𝑏 )  Fn  ( 1 ... ( 𝑁  +  1 ) )  ∧  ( { 〈 1 ,  1 〉 }  ∪  𝑐 )  Fn  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐹  ∘  𝑏 )  =  ( { 〈 1 ,  1 〉 }  ∪  𝑐 )  ↔  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) ) ) | 
						
							| 370 | 365 368 369 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ( 𝐹  ∘  𝑏 )  =  ( { 〈 1 ,  1 〉 }  ∪  𝑐 )  ↔  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( ( 𝐹  ∘  𝑏 ) ‘ 𝑦 )  =  ( ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) ‘ 𝑦 ) ) ) | 
						
							| 371 |  | fnssres | ⊢ ( ( ( 𝐹  ∘  𝑏 )  Fn  ( 1 ... ( 𝑁  +  1 ) )  ∧  ( 2 ... ( 𝑁  +  1 ) )  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) )  Fn  ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 372 | 365 120 371 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) )  Fn  ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 373 | 193 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  𝑐 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 374 |  | f1ofn | ⊢ ( 𝑐 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  →  𝑐  Fn  ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 375 | 373 374 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  𝑐  Fn  ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 376 |  | eqfnfv | ⊢ ( ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) )  Fn  ( 2 ... ( 𝑁  +  1 ) )  ∧  𝑐  Fn  ( 2 ... ( 𝑁  +  1 ) ) )  →  ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) )  =  𝑐  ↔  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 377 | 372 375 376 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) )  =  𝑐  ↔  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 378 | 364 370 377 | 3bitr4d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ( 𝐹  ∘  𝑏 )  =  ( { 〈 1 ,  1 〉 }  ∪  𝑐 )  ↔  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) )  =  𝑐 ) ) | 
						
							| 379 |  | eqcom | ⊢ ( ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) )  =  𝑐  ↔  𝑐  =  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 380 | 378 379 | bitrdi | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ( 𝐹  ∘  𝑏 )  =  ( { 〈 1 ,  1 〉 }  ∪  𝑐 )  ↔  𝑐  =  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 381 | 333 345 380 | 3bitr3d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( 𝑏  =  ( 𝐹  ∘  ( { 〈 1 ,  1 〉 }  ∪  𝑐 ) )  ↔  𝑐  =  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 382 | 20 183 323 381 | f1o2d | ⊢ ( 𝜑  →  ( 𝑏  ∈  𝐵  ↦  ( ( 𝐹  ∘  𝑏 )  ↾  ( 2 ... ( 𝑁  +  1 ) ) ) ) : 𝐵 –1-1-onto→ 𝐶 ) | 
						
							| 383 | 19 382 | hasheqf1od | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐶 ) ) | 
						
							| 384 | 1 2 | derangen2 | ⊢ ( ( 2 ... ( 𝑁  +  1 ) )  ∈  Fin  →  ( 𝐷 ‘ ( 2 ... ( 𝑁  +  1 ) ) )  =  ( 𝑆 ‘ ( ♯ ‘ ( 2 ... ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 385 | 1 | derangval | ⊢ ( ( 2 ... ( 𝑁  +  1 ) )  ∈  Fin  →  ( 𝐷 ‘ ( 2 ... ( 𝑁  +  1 ) ) )  =  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) | 
						
							| 386 | 10 | fveq2i | ⊢ ( ♯ ‘ 𝐶 )  =  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : ( 2 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 2 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 2 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) | 
						
							| 387 | 385 386 | eqtr4di | ⊢ ( ( 2 ... ( 𝑁  +  1 ) )  ∈  Fin  →  ( 𝐷 ‘ ( 2 ... ( 𝑁  +  1 ) ) )  =  ( ♯ ‘ 𝐶 ) ) | 
						
							| 388 | 384 387 | eqtr3d | ⊢ ( ( 2 ... ( 𝑁  +  1 ) )  ∈  Fin  →  ( 𝑆 ‘ ( ♯ ‘ ( 2 ... ( 𝑁  +  1 ) ) ) )  =  ( ♯ ‘ 𝐶 ) ) | 
						
							| 389 | 164 388 | ax-mp | ⊢ ( 𝑆 ‘ ( ♯ ‘ ( 2 ... ( 𝑁  +  1 ) ) ) )  =  ( ♯ ‘ 𝐶 ) | 
						
							| 390 | 4 60 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 391 |  | eluzp1p1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) ) | 
						
							| 392 | 390 391 | syl | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) ) | 
						
							| 393 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 394 | 393 | fveq2i | ⊢ ( ℤ≥ ‘ 2 )  =  ( ℤ≥ ‘ ( 1  +  1 ) ) | 
						
							| 395 | 392 394 | eleqtrrdi | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 396 |  | hashfz | ⊢ ( ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 2 )  →  ( ♯ ‘ ( 2 ... ( 𝑁  +  1 ) ) )  =  ( ( ( 𝑁  +  1 )  −  2 )  +  1 ) ) | 
						
							| 397 | 395 396 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 2 ... ( 𝑁  +  1 ) ) )  =  ( ( ( 𝑁  +  1 )  −  2 )  +  1 ) ) | 
						
							| 398 | 59 | nncnd | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℂ ) | 
						
							| 399 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 400 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 401 | 398 399 400 | subsubd | ⊢ ( 𝜑  →  ( ( 𝑁  +  1 )  −  ( 2  −  1 ) )  =  ( ( ( 𝑁  +  1 )  −  2 )  +  1 ) ) | 
						
							| 402 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 403 | 402 | oveq2i | ⊢ ( ( 𝑁  +  1 )  −  ( 2  −  1 ) )  =  ( ( 𝑁  +  1 )  −  1 ) | 
						
							| 404 | 4 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 405 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 406 |  | pncan | ⊢ ( ( 𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 407 | 404 405 406 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 408 | 403 407 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝑁  +  1 )  −  ( 2  −  1 ) )  =  𝑁 ) | 
						
							| 409 | 397 401 408 | 3eqtr2d | ⊢ ( 𝜑  →  ( ♯ ‘ ( 2 ... ( 𝑁  +  1 ) ) )  =  𝑁 ) | 
						
							| 410 | 409 | fveq2d | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( ♯ ‘ ( 2 ... ( 𝑁  +  1 ) ) ) )  =  ( 𝑆 ‘ 𝑁 ) ) | 
						
							| 411 | 389 410 | eqtr3id | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐶 )  =  ( 𝑆 ‘ 𝑁 ) ) | 
						
							| 412 | 383 411 | eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  =  ( 𝑆 ‘ 𝑁 ) ) |