Metamath Proof Explorer


Theorem subfacp1lem2b

Description: Lemma for subfacp1 . Properties of a bijection on K augmented with the two-element flip to get a bijection on K u. { 1 , M } . (Contributed by Mario Carneiro, 23-Jan-2015)

Ref Expression
Hypotheses derang.d 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥1-1-onto𝑥 ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) ≠ 𝑦 ) } ) )
subfac.n 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) )
subfacp1lem.a 𝐴 = { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓𝑦 ) ≠ 𝑦 ) }
subfacp1lem1.n ( 𝜑𝑁 ∈ ℕ )
subfacp1lem1.m ( 𝜑𝑀 ∈ ( 2 ... ( 𝑁 + 1 ) ) )
subfacp1lem1.x 𝑀 ∈ V
subfacp1lem1.k 𝐾 = ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } )
subfacp1lem2.5 𝐹 = ( 𝐺 ∪ { ⟨ 1 , 𝑀 ⟩ , ⟨ 𝑀 , 1 ⟩ } )
subfacp1lem2.6 ( 𝜑𝐺 : 𝐾1-1-onto𝐾 )
Assertion subfacp1lem2b ( ( 𝜑𝑋𝐾 ) → ( 𝐹𝑋 ) = ( 𝐺𝑋 ) )

Proof

Step Hyp Ref Expression
1 derang.d 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥1-1-onto𝑥 ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) ≠ 𝑦 ) } ) )
2 subfac.n 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) )
3 subfacp1lem.a 𝐴 = { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓𝑦 ) ≠ 𝑦 ) }
4 subfacp1lem1.n ( 𝜑𝑁 ∈ ℕ )
5 subfacp1lem1.m ( 𝜑𝑀 ∈ ( 2 ... ( 𝑁 + 1 ) ) )
6 subfacp1lem1.x 𝑀 ∈ V
7 subfacp1lem1.k 𝐾 = ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } )
8 subfacp1lem2.5 𝐹 = ( 𝐺 ∪ { ⟨ 1 , 𝑀 ⟩ , ⟨ 𝑀 , 1 ⟩ } )
9 subfacp1lem2.6 ( 𝜑𝐺 : 𝐾1-1-onto𝐾 )
10 1 2 3 4 5 6 7 8 9 subfacp1lem2a ( 𝜑 → ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( 𝐹 ‘ 1 ) = 𝑀 ∧ ( 𝐹𝑀 ) = 1 ) )
11 10 simp1d ( 𝜑𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) )
12 f1ofun ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → Fun 𝐹 )
13 11 12 syl ( 𝜑 → Fun 𝐹 )
14 13 adantr ( ( 𝜑𝑋𝐾 ) → Fun 𝐹 )
15 ssun1 𝐺 ⊆ ( 𝐺 ∪ { ⟨ 1 , 𝑀 ⟩ , ⟨ 𝑀 , 1 ⟩ } )
16 15 8 sseqtrri 𝐺𝐹
17 16 a1i ( ( 𝜑𝑋𝐾 ) → 𝐺𝐹 )
18 f1odm ( 𝐺 : 𝐾1-1-onto𝐾 → dom 𝐺 = 𝐾 )
19 9 18 syl ( 𝜑 → dom 𝐺 = 𝐾 )
20 19 eleq2d ( 𝜑 → ( 𝑋 ∈ dom 𝐺𝑋𝐾 ) )
21 20 biimpar ( ( 𝜑𝑋𝐾 ) → 𝑋 ∈ dom 𝐺 )
22 funssfv ( ( Fun 𝐹𝐺𝐹𝑋 ∈ dom 𝐺 ) → ( 𝐹𝑋 ) = ( 𝐺𝑋 ) )
23 14 17 21 22 syl3anc ( ( 𝜑𝑋𝐾 ) → ( 𝐹𝑋 ) = ( 𝐺𝑋 ) )