| Step |
Hyp |
Ref |
Expression |
| 1 |
|
derang.d |
⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
| 2 |
|
subfac.n |
⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) |
| 3 |
|
subfacp1lem.a |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } |
| 4 |
|
subfacp1lem1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 5 |
|
subfacp1lem1.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 2 ... ( 𝑁 + 1 ) ) ) |
| 6 |
|
subfacp1lem1.x |
⊢ 𝑀 ∈ V |
| 7 |
|
subfacp1lem1.k |
⊢ 𝐾 = ( ( 2 ... ( 𝑁 + 1 ) ) ∖ { 𝑀 } ) |
| 8 |
|
subfacp1lem2.5 |
⊢ 𝐹 = ( 𝐺 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) |
| 9 |
|
subfacp1lem2.6 |
⊢ ( 𝜑 → 𝐺 : 𝐾 –1-1-onto→ 𝐾 ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
subfacp1lem2a |
⊢ ( 𝜑 → ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ∧ ( 𝐹 ‘ 1 ) = 𝑀 ∧ ( 𝐹 ‘ 𝑀 ) = 1 ) ) |
| 11 |
10
|
simp1d |
⊢ ( 𝜑 → 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 12 |
|
f1ofun |
⊢ ( 𝐹 : ( 1 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑁 + 1 ) ) → Fun 𝐹 ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ) → Fun 𝐹 ) |
| 15 |
|
ssun1 |
⊢ 𝐺 ⊆ ( 𝐺 ∪ { 〈 1 , 𝑀 〉 , 〈 𝑀 , 1 〉 } ) |
| 16 |
15 8
|
sseqtrri |
⊢ 𝐺 ⊆ 𝐹 |
| 17 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ) → 𝐺 ⊆ 𝐹 ) |
| 18 |
|
f1odm |
⊢ ( 𝐺 : 𝐾 –1-1-onto→ 𝐾 → dom 𝐺 = 𝐾 ) |
| 19 |
9 18
|
syl |
⊢ ( 𝜑 → dom 𝐺 = 𝐾 ) |
| 20 |
19
|
eleq2d |
⊢ ( 𝜑 → ( 𝑋 ∈ dom 𝐺 ↔ 𝑋 ∈ 𝐾 ) ) |
| 21 |
20
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ) → 𝑋 ∈ dom 𝐺 ) |
| 22 |
|
funssfv |
⊢ ( ( Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝑋 ∈ dom 𝐺 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) |
| 23 |
14 17 21 22
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) |