| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derang.d |  |-  D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) | 
						
							| 2 |  | subfac.n |  |-  S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) | 
						
							| 3 |  | subfacp1lem.a |  |-  A = { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) } | 
						
							| 4 |  | subfacp1lem1.n |  |-  ( ph -> N e. NN ) | 
						
							| 5 |  | subfacp1lem1.m |  |-  ( ph -> M e. ( 2 ... ( N + 1 ) ) ) | 
						
							| 6 |  | subfacp1lem1.x |  |-  M e. _V | 
						
							| 7 |  | subfacp1lem1.k |  |-  K = ( ( 2 ... ( N + 1 ) ) \ { M } ) | 
						
							| 8 |  | subfacp1lem2.5 |  |-  F = ( G u. { <. 1 , M >. , <. M , 1 >. } ) | 
						
							| 9 |  | subfacp1lem2.6 |  |-  ( ph -> G : K -1-1-onto-> K ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 9 | subfacp1lem2a |  |-  ( ph -> ( F : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ ( F ` 1 ) = M /\ ( F ` M ) = 1 ) ) | 
						
							| 11 | 10 | simp1d |  |-  ( ph -> F : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) ) | 
						
							| 12 |  | f1ofun |  |-  ( F : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) -> Fun F ) | 
						
							| 13 | 11 12 | syl |  |-  ( ph -> Fun F ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ X e. K ) -> Fun F ) | 
						
							| 15 |  | ssun1 |  |-  G C_ ( G u. { <. 1 , M >. , <. M , 1 >. } ) | 
						
							| 16 | 15 8 | sseqtrri |  |-  G C_ F | 
						
							| 17 | 16 | a1i |  |-  ( ( ph /\ X e. K ) -> G C_ F ) | 
						
							| 18 |  | f1odm |  |-  ( G : K -1-1-onto-> K -> dom G = K ) | 
						
							| 19 | 9 18 | syl |  |-  ( ph -> dom G = K ) | 
						
							| 20 | 19 | eleq2d |  |-  ( ph -> ( X e. dom G <-> X e. K ) ) | 
						
							| 21 | 20 | biimpar |  |-  ( ( ph /\ X e. K ) -> X e. dom G ) | 
						
							| 22 |  | funssfv |  |-  ( ( Fun F /\ G C_ F /\ X e. dom G ) -> ( F ` X ) = ( G ` X ) ) | 
						
							| 23 | 14 17 21 22 | syl3anc |  |-  ( ( ph /\ X e. K ) -> ( F ` X ) = ( G ` X ) ) |