Metamath Proof Explorer


Theorem subfacp1lem2b

Description: Lemma for subfacp1 . Properties of a bijection on K augmented with the two-element flip to get a bijection on K u. { 1 , M } . (Contributed by Mario Carneiro, 23-Jan-2015)

Ref Expression
Hypotheses derang.d D=xFinf|f:x1-1 ontoxyxfyy
subfac.n S=n0D1n
subfacp1lem.a A=f|f:1N+11-1 onto1N+1y1N+1fyy
subfacp1lem1.n φN
subfacp1lem1.m φM2N+1
subfacp1lem1.x MV
subfacp1lem1.k K=2N+1M
subfacp1lem2.5 F=G1MM1
subfacp1lem2.6 φG:K1-1 ontoK
Assertion subfacp1lem2b φXKFX=GX

Proof

Step Hyp Ref Expression
1 derang.d D=xFinf|f:x1-1 ontoxyxfyy
2 subfac.n S=n0D1n
3 subfacp1lem.a A=f|f:1N+11-1 onto1N+1y1N+1fyy
4 subfacp1lem1.n φN
5 subfacp1lem1.m φM2N+1
6 subfacp1lem1.x MV
7 subfacp1lem1.k K=2N+1M
8 subfacp1lem2.5 F=G1MM1
9 subfacp1lem2.6 φG:K1-1 ontoK
10 1 2 3 4 5 6 7 8 9 subfacp1lem2a φF:1N+11-1 onto1N+1F1=MFM=1
11 10 simp1d φF:1N+11-1 onto1N+1
12 f1ofun F:1N+11-1 onto1N+1FunF
13 11 12 syl φFunF
14 13 adantr φXKFunF
15 ssun1 GG1MM1
16 15 8 sseqtrri GF
17 16 a1i φXKGF
18 f1odm G:K1-1 ontoKdomG=K
19 9 18 syl φdomG=K
20 19 eleq2d φXdomGXK
21 20 biimpar φXKXdomG
22 funssfv FunFGFXdomGFX=GX
23 14 17 21 22 syl3anc φXKFX=GX