Metamath Proof Explorer


Theorem subfacp1lem2b

Description: Lemma for subfacp1 . Properties of a bijection on K augmented with the two-element flip to get a bijection on K u. { 1 , M } . (Contributed by Mario Carneiro, 23-Jan-2015)

Ref Expression
Hypotheses derang.d D = x Fin f | f : x 1-1 onto x y x f y y
subfac.n S = n 0 D 1 n
subfacp1lem.a A = f | f : 1 N + 1 1-1 onto 1 N + 1 y 1 N + 1 f y y
subfacp1lem1.n φ N
subfacp1lem1.m φ M 2 N + 1
subfacp1lem1.x M V
subfacp1lem1.k K = 2 N + 1 M
subfacp1lem2.5 F = G 1 M M 1
subfacp1lem2.6 φ G : K 1-1 onto K
Assertion subfacp1lem2b φ X K F X = G X

Proof

Step Hyp Ref Expression
1 derang.d D = x Fin f | f : x 1-1 onto x y x f y y
2 subfac.n S = n 0 D 1 n
3 subfacp1lem.a A = f | f : 1 N + 1 1-1 onto 1 N + 1 y 1 N + 1 f y y
4 subfacp1lem1.n φ N
5 subfacp1lem1.m φ M 2 N + 1
6 subfacp1lem1.x M V
7 subfacp1lem1.k K = 2 N + 1 M
8 subfacp1lem2.5 F = G 1 M M 1
9 subfacp1lem2.6 φ G : K 1-1 onto K
10 1 2 3 4 5 6 7 8 9 subfacp1lem2a φ F : 1 N + 1 1-1 onto 1 N + 1 F 1 = M F M = 1
11 10 simp1d φ F : 1 N + 1 1-1 onto 1 N + 1
12 f1ofun F : 1 N + 1 1-1 onto 1 N + 1 Fun F
13 11 12 syl φ Fun F
14 13 adantr φ X K Fun F
15 ssun1 G G 1 M M 1
16 15 8 sseqtrri G F
17 16 a1i φ X K G F
18 f1odm G : K 1-1 onto K dom G = K
19 9 18 syl φ dom G = K
20 19 eleq2d φ X dom G X K
21 20 biimpar φ X K X dom G
22 funssfv Fun F G F X dom G F X = G X
23 14 17 21 22 syl3anc φ X K F X = G X