| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derang.d | ⊢ 𝐷  =  ( 𝑥  ∈  Fin  ↦  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : 𝑥 –1-1-onto→ 𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) | 
						
							| 2 |  | subfac.n | ⊢ 𝑆  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) | 
						
							| 3 |  | subfacp1lem.a | ⊢ 𝐴  =  { 𝑓  ∣  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } | 
						
							| 4 |  | subfacp1lem1.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 5 |  | subfacp1lem1.m | ⊢ ( 𝜑  →  𝑀  ∈  ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 6 |  | subfacp1lem1.x | ⊢ 𝑀  ∈  V | 
						
							| 7 |  | subfacp1lem1.k | ⊢ 𝐾  =  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { 𝑀 } ) | 
						
							| 8 |  | subfacp1lem3.b | ⊢ 𝐵  =  { 𝑔  ∈  𝐴  ∣  ( ( 𝑔 ‘ 1 )  =  𝑀  ∧  ( 𝑔 ‘ 𝑀 )  =  1 ) } | 
						
							| 9 |  | subfacp1lem3.c | ⊢ 𝐶  =  { 𝑓  ∣  ( 𝑓 : 𝐾 –1-1-onto→ 𝐾  ∧  ∀ 𝑦  ∈  𝐾 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } | 
						
							| 10 |  | fzfi | ⊢ ( 1 ... ( 𝑁  +  1 ) )  ∈  Fin | 
						
							| 11 |  | deranglem | ⊢ ( ( 1 ... ( 𝑁  +  1 ) )  ∈  Fin  →  { 𝑓  ∣  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) }  ∈  Fin ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ { 𝑓  ∣  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) }  ∈  Fin | 
						
							| 13 | 3 12 | eqeltri | ⊢ 𝐴  ∈  Fin | 
						
							| 14 | 8 | ssrab3 | ⊢ 𝐵  ⊆  𝐴 | 
						
							| 15 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  𝐴 )  →  𝐵  ∈  Fin ) | 
						
							| 16 | 13 14 15 | mp2an | ⊢ 𝐵  ∈  Fin | 
						
							| 17 | 16 | elexi | ⊢ 𝐵  ∈  V | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 19 |  | eqid | ⊢ ( 𝑏  ∈  𝐵  ↦  ( 𝑏  ↾  𝐾 ) )  =  ( 𝑏  ∈  𝐵  ↦  ( 𝑏  ↾  𝐾 ) ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  𝐵 ) | 
						
							| 21 |  | fveq1 | ⊢ ( 𝑔  =  𝑏  →  ( 𝑔 ‘ 1 )  =  ( 𝑏 ‘ 1 ) ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( 𝑔  =  𝑏  →  ( ( 𝑔 ‘ 1 )  =  𝑀  ↔  ( 𝑏 ‘ 1 )  =  𝑀 ) ) | 
						
							| 23 |  | fveq1 | ⊢ ( 𝑔  =  𝑏  →  ( 𝑔 ‘ 𝑀 )  =  ( 𝑏 ‘ 𝑀 ) ) | 
						
							| 24 | 23 | eqeq1d | ⊢ ( 𝑔  =  𝑏  →  ( ( 𝑔 ‘ 𝑀 )  =  1  ↔  ( 𝑏 ‘ 𝑀 )  =  1 ) ) | 
						
							| 25 | 22 24 | anbi12d | ⊢ ( 𝑔  =  𝑏  →  ( ( ( 𝑔 ‘ 1 )  =  𝑀  ∧  ( 𝑔 ‘ 𝑀 )  =  1 )  ↔  ( ( 𝑏 ‘ 1 )  =  𝑀  ∧  ( 𝑏 ‘ 𝑀 )  =  1 ) ) ) | 
						
							| 26 | 25 8 | elrab2 | ⊢ ( 𝑏  ∈  𝐵  ↔  ( 𝑏  ∈  𝐴  ∧  ( ( 𝑏 ‘ 1 )  =  𝑀  ∧  ( 𝑏 ‘ 𝑀 )  =  1 ) ) ) | 
						
							| 27 | 20 26 | sylib | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏  ∈  𝐴  ∧  ( ( 𝑏 ‘ 1 )  =  𝑀  ∧  ( 𝑏 ‘ 𝑀 )  =  1 ) ) ) | 
						
							| 28 | 27 | simpld | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  𝐴 ) | 
						
							| 29 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 30 |  | f1oeq1 | ⊢ ( 𝑓  =  𝑏  →  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ↔  𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 31 |  | fveq1 | ⊢ ( 𝑓  =  𝑏  →  ( 𝑓 ‘ 𝑦 )  =  ( 𝑏 ‘ 𝑦 ) ) | 
						
							| 32 | 31 | neeq1d | ⊢ ( 𝑓  =  𝑏  →  ( ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 33 | 32 | ralbidv | ⊢ ( 𝑓  =  𝑏  →  ( ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 34 | 30 33 | anbi12d | ⊢ ( 𝑓  =  𝑏  →  ( ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 )  ↔  ( 𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) ) ) | 
						
							| 35 | 29 34 3 | elab2 | ⊢ ( 𝑏  ∈  𝐴  ↔  ( 𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 36 | 28 35 | sylib | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 37 | 36 | simpld | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 38 |  | f1of1 | ⊢ ( 𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  →  𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 39 |  | df-f1 | ⊢ ( 𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1→ ( 1 ... ( 𝑁  +  1 ) )  ↔  ( 𝑏 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ ( 1 ... ( 𝑁  +  1 ) )  ∧  Fun  ◡ 𝑏 ) ) | 
						
							| 40 | 39 | simprbi | ⊢ ( 𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1→ ( 1 ... ( 𝑁  +  1 ) )  →  Fun  ◡ 𝑏 ) | 
						
							| 41 | 37 38 40 | 3syl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  Fun  ◡ 𝑏 ) | 
						
							| 42 |  | f1ofn | ⊢ ( 𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  →  𝑏  Fn  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 43 | 37 42 | syl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  𝑏  Fn  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 44 |  | fnresdm | ⊢ ( 𝑏  Fn  ( 1 ... ( 𝑁  +  1 ) )  →  ( 𝑏  ↾  ( 1 ... ( 𝑁  +  1 ) ) )  =  𝑏 ) | 
						
							| 45 |  | f1oeq1 | ⊢ ( ( 𝑏  ↾  ( 1 ... ( 𝑁  +  1 ) ) )  =  𝑏  →  ( ( 𝑏  ↾  ( 1 ... ( 𝑁  +  1 ) ) ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ↔  𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 46 | 43 44 45 | 3syl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝑏  ↾  ( 1 ... ( 𝑁  +  1 ) ) ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ↔  𝑏 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 47 | 37 46 | mpbird | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏  ↾  ( 1 ... ( 𝑁  +  1 ) ) ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 48 |  | f1ofo | ⊢ ( ( 𝑏  ↾  ( 1 ... ( 𝑁  +  1 ) ) ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  →  ( 𝑏  ↾  ( 1 ... ( 𝑁  +  1 ) ) ) : ( 1 ... ( 𝑁  +  1 ) ) –onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 49 | 47 48 | syl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏  ↾  ( 1 ... ( 𝑁  +  1 ) ) ) : ( 1 ... ( 𝑁  +  1 ) ) –onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 50 |  | ssun2 | ⊢ { 1 ,  𝑀 }  ⊆  ( 𝐾  ∪  { 1 ,  𝑀 } ) | 
						
							| 51 | 1 2 3 4 5 6 7 | subfacp1lem1 | ⊢ ( 𝜑  →  ( ( 𝐾  ∩  { 1 ,  𝑀 } )  =  ∅  ∧  ( 𝐾  ∪  { 1 ,  𝑀 } )  =  ( 1 ... ( 𝑁  +  1 ) )  ∧  ( ♯ ‘ 𝐾 )  =  ( 𝑁  −  1 ) ) ) | 
						
							| 52 | 51 | simp2d | ⊢ ( 𝜑  →  ( 𝐾  ∪  { 1 ,  𝑀 } )  =  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 53 | 50 52 | sseqtrid | ⊢ ( 𝜑  →  { 1 ,  𝑀 }  ⊆  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  { 1 ,  𝑀 }  ⊆  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 55 | 43 54 | fnssresd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏  ↾  { 1 ,  𝑀 } )  Fn  { 1 ,  𝑀 } ) | 
						
							| 56 | 27 | simprd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝑏 ‘ 1 )  =  𝑀  ∧  ( 𝑏 ‘ 𝑀 )  =  1 ) ) | 
						
							| 57 | 56 | simpld | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏 ‘ 1 )  =  𝑀 ) | 
						
							| 58 | 6 | prid2 | ⊢ 𝑀  ∈  { 1 ,  𝑀 } | 
						
							| 59 | 57 58 | eqeltrdi | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏 ‘ 1 )  ∈  { 1 ,  𝑀 } ) | 
						
							| 60 | 56 | simprd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏 ‘ 𝑀 )  =  1 ) | 
						
							| 61 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 62 | 61 | prid1 | ⊢ 1  ∈  { 1 ,  𝑀 } | 
						
							| 63 | 60 62 | eqeltrdi | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏 ‘ 𝑀 )  ∈  { 1 ,  𝑀 } ) | 
						
							| 64 |  | fveq2 | ⊢ ( 𝑥  =  1  →  ( 𝑏 ‘ 𝑥 )  =  ( 𝑏 ‘ 1 ) ) | 
						
							| 65 | 64 | eleq1d | ⊢ ( 𝑥  =  1  →  ( ( 𝑏 ‘ 𝑥 )  ∈  { 1 ,  𝑀 }  ↔  ( 𝑏 ‘ 1 )  ∈  { 1 ,  𝑀 } ) ) | 
						
							| 66 |  | fveq2 | ⊢ ( 𝑥  =  𝑀  →  ( 𝑏 ‘ 𝑥 )  =  ( 𝑏 ‘ 𝑀 ) ) | 
						
							| 67 | 66 | eleq1d | ⊢ ( 𝑥  =  𝑀  →  ( ( 𝑏 ‘ 𝑥 )  ∈  { 1 ,  𝑀 }  ↔  ( 𝑏 ‘ 𝑀 )  ∈  { 1 ,  𝑀 } ) ) | 
						
							| 68 | 61 6 65 67 | ralpr | ⊢ ( ∀ 𝑥  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑥 )  ∈  { 1 ,  𝑀 }  ↔  ( ( 𝑏 ‘ 1 )  ∈  { 1 ,  𝑀 }  ∧  ( 𝑏 ‘ 𝑀 )  ∈  { 1 ,  𝑀 } ) ) | 
						
							| 69 | 59 63 68 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ∀ 𝑥  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑥 )  ∈  { 1 ,  𝑀 } ) | 
						
							| 70 |  | fvres | ⊢ ( 𝑥  ∈  { 1 ,  𝑀 }  →  ( ( 𝑏  ↾  { 1 ,  𝑀 } ) ‘ 𝑥 )  =  ( 𝑏 ‘ 𝑥 ) ) | 
						
							| 71 | 70 | eleq1d | ⊢ ( 𝑥  ∈  { 1 ,  𝑀 }  →  ( ( ( 𝑏  ↾  { 1 ,  𝑀 } ) ‘ 𝑥 )  ∈  { 1 ,  𝑀 }  ↔  ( 𝑏 ‘ 𝑥 )  ∈  { 1 ,  𝑀 } ) ) | 
						
							| 72 | 71 | ralbiia | ⊢ ( ∀ 𝑥  ∈  { 1 ,  𝑀 } ( ( 𝑏  ↾  { 1 ,  𝑀 } ) ‘ 𝑥 )  ∈  { 1 ,  𝑀 }  ↔  ∀ 𝑥  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑥 )  ∈  { 1 ,  𝑀 } ) | 
						
							| 73 | 69 72 | sylibr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ∀ 𝑥  ∈  { 1 ,  𝑀 } ( ( 𝑏  ↾  { 1 ,  𝑀 } ) ‘ 𝑥 )  ∈  { 1 ,  𝑀 } ) | 
						
							| 74 |  | ffnfv | ⊢ ( ( 𝑏  ↾  { 1 ,  𝑀 } ) : { 1 ,  𝑀 } ⟶ { 1 ,  𝑀 }  ↔  ( ( 𝑏  ↾  { 1 ,  𝑀 } )  Fn  { 1 ,  𝑀 }  ∧  ∀ 𝑥  ∈  { 1 ,  𝑀 } ( ( 𝑏  ↾  { 1 ,  𝑀 } ) ‘ 𝑥 )  ∈  { 1 ,  𝑀 } ) ) | 
						
							| 75 | 55 73 74 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏  ↾  { 1 ,  𝑀 } ) : { 1 ,  𝑀 } ⟶ { 1 ,  𝑀 } ) | 
						
							| 76 |  | fveqeq2 | ⊢ ( 𝑦  =  𝑀  →  ( ( 𝑏 ‘ 𝑦 )  =  1  ↔  ( 𝑏 ‘ 𝑀 )  =  1 ) ) | 
						
							| 77 | 76 | rspcev | ⊢ ( ( 𝑀  ∈  { 1 ,  𝑀 }  ∧  ( 𝑏 ‘ 𝑀 )  =  1 )  →  ∃ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  1 ) | 
						
							| 78 | 58 60 77 | sylancr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ∃ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  1 ) | 
						
							| 79 |  | fveqeq2 | ⊢ ( 𝑦  =  1  →  ( ( 𝑏 ‘ 𝑦 )  =  𝑀  ↔  ( 𝑏 ‘ 1 )  =  𝑀 ) ) | 
						
							| 80 | 79 | rspcev | ⊢ ( ( 1  ∈  { 1 ,  𝑀 }  ∧  ( 𝑏 ‘ 1 )  =  𝑀 )  →  ∃ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  𝑀 ) | 
						
							| 81 | 62 57 80 | sylancr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ∃ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  𝑀 ) | 
						
							| 82 |  | eqeq2 | ⊢ ( 𝑥  =  1  →  ( ( 𝑏 ‘ 𝑦 )  =  𝑥  ↔  ( 𝑏 ‘ 𝑦 )  =  1 ) ) | 
						
							| 83 | 82 | rexbidv | ⊢ ( 𝑥  =  1  →  ( ∃ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  𝑥  ↔  ∃ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  1 ) ) | 
						
							| 84 |  | eqeq2 | ⊢ ( 𝑥  =  𝑀  →  ( ( 𝑏 ‘ 𝑦 )  =  𝑥  ↔  ( 𝑏 ‘ 𝑦 )  =  𝑀 ) ) | 
						
							| 85 | 84 | rexbidv | ⊢ ( 𝑥  =  𝑀  →  ( ∃ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  𝑥  ↔  ∃ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  𝑀 ) ) | 
						
							| 86 | 61 6 83 85 | ralpr | ⊢ ( ∀ 𝑥  ∈  { 1 ,  𝑀 } ∃ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  𝑥  ↔  ( ∃ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  1  ∧  ∃ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  𝑀 ) ) | 
						
							| 87 | 78 81 86 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ∀ 𝑥  ∈  { 1 ,  𝑀 } ∃ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  𝑥 ) | 
						
							| 88 |  | eqcom | ⊢ ( 𝑥  =  ( ( 𝑏  ↾  { 1 ,  𝑀 } ) ‘ 𝑦 )  ↔  ( ( 𝑏  ↾  { 1 ,  𝑀 } ) ‘ 𝑦 )  =  𝑥 ) | 
						
							| 89 |  | fvres | ⊢ ( 𝑦  ∈  { 1 ,  𝑀 }  →  ( ( 𝑏  ↾  { 1 ,  𝑀 } ) ‘ 𝑦 )  =  ( 𝑏 ‘ 𝑦 ) ) | 
						
							| 90 | 89 | eqeq1d | ⊢ ( 𝑦  ∈  { 1 ,  𝑀 }  →  ( ( ( 𝑏  ↾  { 1 ,  𝑀 } ) ‘ 𝑦 )  =  𝑥  ↔  ( 𝑏 ‘ 𝑦 )  =  𝑥 ) ) | 
						
							| 91 | 88 90 | bitrid | ⊢ ( 𝑦  ∈  { 1 ,  𝑀 }  →  ( 𝑥  =  ( ( 𝑏  ↾  { 1 ,  𝑀 } ) ‘ 𝑦 )  ↔  ( 𝑏 ‘ 𝑦 )  =  𝑥 ) ) | 
						
							| 92 | 91 | rexbiia | ⊢ ( ∃ 𝑦  ∈  { 1 ,  𝑀 } 𝑥  =  ( ( 𝑏  ↾  { 1 ,  𝑀 } ) ‘ 𝑦 )  ↔  ∃ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  𝑥 ) | 
						
							| 93 | 92 | ralbii | ⊢ ( ∀ 𝑥  ∈  { 1 ,  𝑀 } ∃ 𝑦  ∈  { 1 ,  𝑀 } 𝑥  =  ( ( 𝑏  ↾  { 1 ,  𝑀 } ) ‘ 𝑦 )  ↔  ∀ 𝑥  ∈  { 1 ,  𝑀 } ∃ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  𝑥 ) | 
						
							| 94 | 87 93 | sylibr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ∀ 𝑥  ∈  { 1 ,  𝑀 } ∃ 𝑦  ∈  { 1 ,  𝑀 } 𝑥  =  ( ( 𝑏  ↾  { 1 ,  𝑀 } ) ‘ 𝑦 ) ) | 
						
							| 95 |  | dffo3 | ⊢ ( ( 𝑏  ↾  { 1 ,  𝑀 } ) : { 1 ,  𝑀 } –onto→ { 1 ,  𝑀 }  ↔  ( ( 𝑏  ↾  { 1 ,  𝑀 } ) : { 1 ,  𝑀 } ⟶ { 1 ,  𝑀 }  ∧  ∀ 𝑥  ∈  { 1 ,  𝑀 } ∃ 𝑦  ∈  { 1 ,  𝑀 } 𝑥  =  ( ( 𝑏  ↾  { 1 ,  𝑀 } ) ‘ 𝑦 ) ) ) | 
						
							| 96 | 75 94 95 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏  ↾  { 1 ,  𝑀 } ) : { 1 ,  𝑀 } –onto→ { 1 ,  𝑀 } ) | 
						
							| 97 |  | resdif | ⊢ ( ( Fun  ◡ 𝑏  ∧  ( 𝑏  ↾  ( 1 ... ( 𝑁  +  1 ) ) ) : ( 1 ... ( 𝑁  +  1 ) ) –onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ( 𝑏  ↾  { 1 ,  𝑀 } ) : { 1 ,  𝑀 } –onto→ { 1 ,  𝑀 } )  →  ( 𝑏  ↾  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } ) ) : ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } ) –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } ) ) | 
						
							| 98 | 41 49 96 97 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏  ↾  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } ) ) : ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } ) –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } ) ) | 
						
							| 99 |  | uncom | ⊢ ( { 1 ,  𝑀 }  ∪  𝐾 )  =  ( 𝐾  ∪  { 1 ,  𝑀 } ) | 
						
							| 100 | 99 52 | eqtrid | ⊢ ( 𝜑  →  ( { 1 ,  𝑀 }  ∪  𝐾 )  =  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 101 |  | incom | ⊢ ( { 1 ,  𝑀 }  ∩  𝐾 )  =  ( 𝐾  ∩  { 1 ,  𝑀 } ) | 
						
							| 102 | 51 | simp1d | ⊢ ( 𝜑  →  ( 𝐾  ∩  { 1 ,  𝑀 } )  =  ∅ ) | 
						
							| 103 | 101 102 | eqtrid | ⊢ ( 𝜑  →  ( { 1 ,  𝑀 }  ∩  𝐾 )  =  ∅ ) | 
						
							| 104 |  | uneqdifeq | ⊢ ( ( { 1 ,  𝑀 }  ⊆  ( 1 ... ( 𝑁  +  1 ) )  ∧  ( { 1 ,  𝑀 }  ∩  𝐾 )  =  ∅ )  →  ( ( { 1 ,  𝑀 }  ∪  𝐾 )  =  ( 1 ... ( 𝑁  +  1 ) )  ↔  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } )  =  𝐾 ) ) | 
						
							| 105 | 53 103 104 | syl2anc | ⊢ ( 𝜑  →  ( ( { 1 ,  𝑀 }  ∪  𝐾 )  =  ( 1 ... ( 𝑁  +  1 ) )  ↔  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } )  =  𝐾 ) ) | 
						
							| 106 | 100 105 | mpbid | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } )  =  𝐾 ) | 
						
							| 107 | 106 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } )  =  𝐾 ) | 
						
							| 108 |  | reseq2 | ⊢ ( ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } )  =  𝐾  →  ( 𝑏  ↾  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } ) )  =  ( 𝑏  ↾  𝐾 ) ) | 
						
							| 109 | 108 | f1oeq1d | ⊢ ( ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } )  =  𝐾  →  ( ( 𝑏  ↾  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } ) ) : ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } ) –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } )  ↔  ( 𝑏  ↾  𝐾 ) : ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } ) –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } ) ) ) | 
						
							| 110 |  | f1oeq2 | ⊢ ( ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } )  =  𝐾  →  ( ( 𝑏  ↾  𝐾 ) : ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } ) –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } )  ↔  ( 𝑏  ↾  𝐾 ) : 𝐾 –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } ) ) ) | 
						
							| 111 |  | f1oeq3 | ⊢ ( ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } )  =  𝐾  →  ( ( 𝑏  ↾  𝐾 ) : 𝐾 –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } )  ↔  ( 𝑏  ↾  𝐾 ) : 𝐾 –1-1-onto→ 𝐾 ) ) | 
						
							| 112 | 109 110 111 | 3bitrd | ⊢ ( ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } )  =  𝐾  →  ( ( 𝑏  ↾  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } ) ) : ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } ) –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } )  ↔  ( 𝑏  ↾  𝐾 ) : 𝐾 –1-1-onto→ 𝐾 ) ) | 
						
							| 113 | 107 112 | syl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝑏  ↾  ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } ) ) : ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } ) –1-1-onto→ ( ( 1 ... ( 𝑁  +  1 ) )  ∖  { 1 ,  𝑀 } )  ↔  ( 𝑏  ↾  𝐾 ) : 𝐾 –1-1-onto→ 𝐾 ) ) | 
						
							| 114 | 98 113 | mpbid | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏  ↾  𝐾 ) : 𝐾 –1-1-onto→ 𝐾 ) | 
						
							| 115 |  | ssun1 | ⊢ 𝐾  ⊆  ( 𝐾  ∪  { 1 ,  𝑀 } ) | 
						
							| 116 | 115 52 | sseqtrid | ⊢ ( 𝜑  →  𝐾  ⊆  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 117 | 116 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  𝐾  ⊆  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 118 | 36 | simprd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 119 |  | ssralv | ⊢ ( 𝐾  ⊆  ( 1 ... ( 𝑁  +  1 ) )  →  ( ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑏 ‘ 𝑦 )  ≠  𝑦  →  ∀ 𝑦  ∈  𝐾 ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 120 | 117 118 119 | sylc | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ∀ 𝑦  ∈  𝐾 ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 121 | 29 | resex | ⊢ ( 𝑏  ↾  𝐾 )  ∈  V | 
						
							| 122 |  | f1oeq1 | ⊢ ( 𝑓  =  ( 𝑏  ↾  𝐾 )  →  ( 𝑓 : 𝐾 –1-1-onto→ 𝐾  ↔  ( 𝑏  ↾  𝐾 ) : 𝐾 –1-1-onto→ 𝐾 ) ) | 
						
							| 123 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑏  ↾  𝐾 )  →  ( 𝑓 ‘ 𝑦 )  =  ( ( 𝑏  ↾  𝐾 ) ‘ 𝑦 ) ) | 
						
							| 124 |  | fvres | ⊢ ( 𝑦  ∈  𝐾  →  ( ( 𝑏  ↾  𝐾 ) ‘ 𝑦 )  =  ( 𝑏 ‘ 𝑦 ) ) | 
						
							| 125 | 123 124 | sylan9eq | ⊢ ( ( 𝑓  =  ( 𝑏  ↾  𝐾 )  ∧  𝑦  ∈  𝐾 )  →  ( 𝑓 ‘ 𝑦 )  =  ( 𝑏 ‘ 𝑦 ) ) | 
						
							| 126 | 125 | neeq1d | ⊢ ( ( 𝑓  =  ( 𝑏  ↾  𝐾 )  ∧  𝑦  ∈  𝐾 )  →  ( ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 127 | 126 | ralbidva | ⊢ ( 𝑓  =  ( 𝑏  ↾  𝐾 )  →  ( ∀ 𝑦  ∈  𝐾 ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ∀ 𝑦  ∈  𝐾 ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 128 | 122 127 | anbi12d | ⊢ ( 𝑓  =  ( 𝑏  ↾  𝐾 )  →  ( ( 𝑓 : 𝐾 –1-1-onto→ 𝐾  ∧  ∀ 𝑦  ∈  𝐾 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 )  ↔  ( ( 𝑏  ↾  𝐾 ) : 𝐾 –1-1-onto→ 𝐾  ∧  ∀ 𝑦  ∈  𝐾 ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) ) ) | 
						
							| 129 | 121 128 9 | elab2 | ⊢ ( ( 𝑏  ↾  𝐾 )  ∈  𝐶  ↔  ( ( 𝑏  ↾  𝐾 ) : 𝐾 –1-1-onto→ 𝐾  ∧  ∀ 𝑦  ∈  𝐾 ( 𝑏 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 130 | 114 120 129 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏  ↾  𝐾 )  ∈  𝐶 ) | 
						
							| 131 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  𝑁  ∈  ℕ ) | 
						
							| 132 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  𝑀  ∈  ( 2 ... ( 𝑁  +  1 ) ) ) | 
						
							| 133 |  | eqid | ⊢ ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  =  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) | 
						
							| 134 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  𝑐  ∈  𝐶 ) | 
						
							| 135 |  | vex | ⊢ 𝑐  ∈  V | 
						
							| 136 |  | f1oeq1 | ⊢ ( 𝑓  =  𝑐  →  ( 𝑓 : 𝐾 –1-1-onto→ 𝐾  ↔  𝑐 : 𝐾 –1-1-onto→ 𝐾 ) ) | 
						
							| 137 |  | fveq1 | ⊢ ( 𝑓  =  𝑐  →  ( 𝑓 ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) | 
						
							| 138 | 137 | neeq1d | ⊢ ( 𝑓  =  𝑐  →  ( ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ( 𝑐 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 139 | 138 | ralbidv | ⊢ ( 𝑓  =  𝑐  →  ( ∀ 𝑦  ∈  𝐾 ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ∀ 𝑦  ∈  𝐾 ( 𝑐 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 140 | 136 139 | anbi12d | ⊢ ( 𝑓  =  𝑐  →  ( ( 𝑓 : 𝐾 –1-1-onto→ 𝐾  ∧  ∀ 𝑦  ∈  𝐾 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 )  ↔  ( 𝑐 : 𝐾 –1-1-onto→ 𝐾  ∧  ∀ 𝑦  ∈  𝐾 ( 𝑐 ‘ 𝑦 )  ≠  𝑦 ) ) ) | 
						
							| 141 | 135 140 9 | elab2 | ⊢ ( 𝑐  ∈  𝐶  ↔  ( 𝑐 : 𝐾 –1-1-onto→ 𝐾  ∧  ∀ 𝑦  ∈  𝐾 ( 𝑐 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 142 | 134 141 | sylib | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝑐 : 𝐾 –1-1-onto→ 𝐾  ∧  ∀ 𝑦  ∈  𝐾 ( 𝑐 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 143 | 142 | simpld | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  𝑐 : 𝐾 –1-1-onto→ 𝐾 ) | 
						
							| 144 | 1 2 3 131 132 6 7 133 143 | subfacp1lem2a | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 1 )  =  𝑀  ∧  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑀 )  =  1 ) ) | 
						
							| 145 | 144 | simp1d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 146 | 1 2 3 131 132 6 7 133 143 | subfacp1lem2b | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  𝐾 )  →  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) | 
						
							| 147 | 142 | simprd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ∀ 𝑦  ∈  𝐾 ( 𝑐 ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 148 | 147 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  𝐾 )  →  ( 𝑐 ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 149 | 146 148 | eqnetrd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  𝐾 )  →  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 150 | 149 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ∀ 𝑦  ∈  𝐾 ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 151 | 144 | simp2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 1 )  =  𝑀 ) | 
						
							| 152 |  | elfzuz | ⊢ ( 𝑀  ∈  ( 2 ... ( 𝑁  +  1 ) )  →  𝑀  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 153 |  | eluz2b3 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑀  ∈  ℕ  ∧  𝑀  ≠  1 ) ) | 
						
							| 154 | 153 | simprbi | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 2 )  →  𝑀  ≠  1 ) | 
						
							| 155 | 5 152 154 | 3syl | ⊢ ( 𝜑  →  𝑀  ≠  1 ) | 
						
							| 156 | 155 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  𝑀  ≠  1 ) | 
						
							| 157 | 151 156 | eqnetrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 1 )  ≠  1 ) | 
						
							| 158 | 144 | simp3d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑀 )  =  1 ) | 
						
							| 159 | 156 | necomd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  1  ≠  𝑀 ) | 
						
							| 160 | 158 159 | eqnetrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑀 )  ≠  𝑀 ) | 
						
							| 161 |  | fveq2 | ⊢ ( 𝑦  =  1  →  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 1 ) ) | 
						
							| 162 |  | id | ⊢ ( 𝑦  =  1  →  𝑦  =  1 ) | 
						
							| 163 | 161 162 | neeq12d | ⊢ ( 𝑦  =  1  →  ( ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ≠  𝑦  ↔  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 1 )  ≠  1 ) ) | 
						
							| 164 |  | fveq2 | ⊢ ( 𝑦  =  𝑀  →  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑀 ) ) | 
						
							| 165 |  | id | ⊢ ( 𝑦  =  𝑀  →  𝑦  =  𝑀 ) | 
						
							| 166 | 164 165 | neeq12d | ⊢ ( 𝑦  =  𝑀  →  ( ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ≠  𝑦  ↔  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑀 )  ≠  𝑀 ) ) | 
						
							| 167 | 61 6 163 166 | ralpr | ⊢ ( ∀ 𝑦  ∈  { 1 ,  𝑀 } ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ≠  𝑦  ↔  ( ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 1 )  ≠  1  ∧  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑀 )  ≠  𝑀 ) ) | 
						
							| 168 | 157 160 167 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ∀ 𝑦  ∈  { 1 ,  𝑀 } ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 169 |  | ralunb | ⊢ ( ∀ 𝑦  ∈  ( 𝐾  ∪  { 1 ,  𝑀 } ) ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ≠  𝑦  ↔  ( ∀ 𝑦  ∈  𝐾 ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ≠  𝑦  ∧  ∀ 𝑦  ∈  { 1 ,  𝑀 } ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 170 | 150 168 169 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ∀ 𝑦  ∈  ( 𝐾  ∪  { 1 ,  𝑀 } ) ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 171 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝐾  ∪  { 1 ,  𝑀 } )  =  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 172 | 170 171 | raleqtrdv | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 173 |  | prex | ⊢ { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 }  ∈  V | 
						
							| 174 | 135 173 | unex | ⊢ ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  ∈  V | 
						
							| 175 |  | f1oeq1 | ⊢ ( 𝑓  =  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  →  ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ↔  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 176 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  →  ( 𝑓 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 ) ) | 
						
							| 177 | 176 | neeq1d | ⊢ ( 𝑓  =  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  →  ( ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 178 | 177 | ralbidv | ⊢ ( 𝑓  =  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  →  ( ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 179 | 175 178 | anbi12d | ⊢ ( 𝑓  =  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  →  ( ( 𝑓 : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑓 ‘ 𝑦 )  ≠  𝑦 )  ↔  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ≠  𝑦 ) ) ) | 
						
							| 180 | 174 179 3 | elab2 | ⊢ ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  ∈  𝐴  ↔  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 181 | 145 172 180 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  ∈  𝐴 ) | 
						
							| 182 | 151 158 | jca | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 1 )  =  𝑀  ∧  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑀 )  =  1 ) ) | 
						
							| 183 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  →  ( 𝑔 ‘ 1 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 1 ) ) | 
						
							| 184 | 183 | eqeq1d | ⊢ ( 𝑔  =  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  →  ( ( 𝑔 ‘ 1 )  =  𝑀  ↔  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 1 )  =  𝑀 ) ) | 
						
							| 185 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  →  ( 𝑔 ‘ 𝑀 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑀 ) ) | 
						
							| 186 | 185 | eqeq1d | ⊢ ( 𝑔  =  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  →  ( ( 𝑔 ‘ 𝑀 )  =  1  ↔  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑀 )  =  1 ) ) | 
						
							| 187 | 184 186 | anbi12d | ⊢ ( 𝑔  =  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  →  ( ( ( 𝑔 ‘ 1 )  =  𝑀  ∧  ( 𝑔 ‘ 𝑀 )  =  1 )  ↔  ( ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 1 )  =  𝑀  ∧  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑀 )  =  1 ) ) ) | 
						
							| 188 | 187 8 | elrab2 | ⊢ ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  ∈  𝐵  ↔  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  ∈  𝐴  ∧  ( ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 1 )  =  𝑀  ∧  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑀 )  =  1 ) ) ) | 
						
							| 189 | 181 182 188 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  ∈  𝐵 ) | 
						
							| 190 | 57 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( 𝑏 ‘ 1 )  =  𝑀 ) | 
						
							| 191 | 151 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 1 )  =  𝑀 ) | 
						
							| 192 | 190 191 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( 𝑏 ‘ 1 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 1 ) ) | 
						
							| 193 | 60 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( 𝑏 ‘ 𝑀 )  =  1 ) | 
						
							| 194 | 158 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑀 )  =  1 ) | 
						
							| 195 | 193 194 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( 𝑏 ‘ 𝑀 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑀 ) ) | 
						
							| 196 |  | fveq2 | ⊢ ( 𝑦  =  1  →  ( 𝑏 ‘ 𝑦 )  =  ( 𝑏 ‘ 1 ) ) | 
						
							| 197 | 196 161 | eqeq12d | ⊢ ( 𝑦  =  1  →  ( ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ↔  ( 𝑏 ‘ 1 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 1 ) ) ) | 
						
							| 198 |  | fveq2 | ⊢ ( 𝑦  =  𝑀  →  ( 𝑏 ‘ 𝑦 )  =  ( 𝑏 ‘ 𝑀 ) ) | 
						
							| 199 | 198 164 | eqeq12d | ⊢ ( 𝑦  =  𝑀  →  ( ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ↔  ( 𝑏 ‘ 𝑀 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑀 ) ) ) | 
						
							| 200 | 61 6 197 199 | ralpr | ⊢ ( ∀ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ↔  ( ( 𝑏 ‘ 1 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 1 )  ∧  ( 𝑏 ‘ 𝑀 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑀 ) ) ) | 
						
							| 201 | 192 195 200 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ∀ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 ) ) | 
						
							| 202 | 201 | biantrud | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ∀ 𝑦  ∈  𝐾 ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ↔  ( ∀ 𝑦  ∈  𝐾 ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ∧  ∀ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 ) ) ) ) | 
						
							| 203 |  | ralunb | ⊢ ( ∀ 𝑦  ∈  ( 𝐾  ∪  { 1 ,  𝑀 } ) ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ↔  ( ∀ 𝑦  ∈  𝐾 ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ∧  ∀ 𝑦  ∈  { 1 ,  𝑀 } ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 ) ) ) | 
						
							| 204 | 202 203 | bitr4di | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ∀ 𝑦  ∈  𝐾 ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  ( 𝐾  ∪  { 1 ,  𝑀 } ) ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 ) ) ) | 
						
							| 205 | 146 | eqeq2d | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  ∧  𝑦  ∈  𝐾 )  →  ( ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ↔  ( 𝑏 ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 206 | 205 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐶 )  →  ( ∀ 𝑦  ∈  𝐾 ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  𝐾 ( 𝑏 ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 207 | 206 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ∀ 𝑦  ∈  𝐾 ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  𝐾 ( 𝑏 ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 208 | 52 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( 𝐾  ∪  { 1 ,  𝑀 } )  =  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 209 | 208 | raleqdv | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ∀ 𝑦  ∈  ( 𝐾  ∪  { 1 ,  𝑀 } ) ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 ) ) ) | 
						
							| 210 | 204 207 209 | 3bitr3rd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  𝐾 ( 𝑏 ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 211 | 124 | eqeq2d | ⊢ ( 𝑦  ∈  𝐾  →  ( ( 𝑐 ‘ 𝑦 )  =  ( ( 𝑏  ↾  𝐾 ) ‘ 𝑦 )  ↔  ( 𝑐 ‘ 𝑦 )  =  ( 𝑏 ‘ 𝑦 ) ) ) | 
						
							| 212 |  | eqcom | ⊢ ( ( 𝑐 ‘ 𝑦 )  =  ( 𝑏 ‘ 𝑦 )  ↔  ( 𝑏 ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) | 
						
							| 213 | 211 212 | bitrdi | ⊢ ( 𝑦  ∈  𝐾  →  ( ( 𝑐 ‘ 𝑦 )  =  ( ( 𝑏  ↾  𝐾 ) ‘ 𝑦 )  ↔  ( 𝑏 ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 214 | 213 | ralbiia | ⊢ ( ∀ 𝑦  ∈  𝐾 ( 𝑐 ‘ 𝑦 )  =  ( ( 𝑏  ↾  𝐾 ) ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  𝐾 ( 𝑏 ‘ 𝑦 )  =  ( 𝑐 ‘ 𝑦 ) ) | 
						
							| 215 | 210 214 | bitr4di | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  𝐾 ( 𝑐 ‘ 𝑦 )  =  ( ( 𝑏  ↾  𝐾 ) ‘ 𝑦 ) ) ) | 
						
							| 216 | 43 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  𝑏  Fn  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 217 | 145 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 218 |  | f1ofn | ⊢ ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) : ( 1 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 1 ... ( 𝑁  +  1 ) )  →  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  Fn  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 219 | 217 218 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  Fn  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 220 |  | eqfnfv | ⊢ ( ( 𝑏  Fn  ( 1 ... ( 𝑁  +  1 ) )  ∧  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  Fn  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝑏  =  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  ↔  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 ) ) ) | 
						
							| 221 | 216 219 220 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( 𝑏  =  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  ↔  ∀ 𝑦  ∈  ( 1 ... ( 𝑁  +  1 ) ) ( 𝑏 ‘ 𝑦 )  =  ( ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } ) ‘ 𝑦 ) ) ) | 
						
							| 222 | 143 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  𝑐 : 𝐾 –1-1-onto→ 𝐾 ) | 
						
							| 223 |  | f1ofn | ⊢ ( 𝑐 : 𝐾 –1-1-onto→ 𝐾  →  𝑐  Fn  𝐾 ) | 
						
							| 224 | 222 223 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  𝑐  Fn  𝐾 ) | 
						
							| 225 | 116 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  𝐾  ⊆  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 226 | 216 225 | fnssresd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( 𝑏  ↾  𝐾 )  Fn  𝐾 ) | 
						
							| 227 |  | eqfnfv | ⊢ ( ( 𝑐  Fn  𝐾  ∧  ( 𝑏  ↾  𝐾 )  Fn  𝐾 )  →  ( 𝑐  =  ( 𝑏  ↾  𝐾 )  ↔  ∀ 𝑦  ∈  𝐾 ( 𝑐 ‘ 𝑦 )  =  ( ( 𝑏  ↾  𝐾 ) ‘ 𝑦 ) ) ) | 
						
							| 228 | 224 226 227 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( 𝑐  =  ( 𝑏  ↾  𝐾 )  ↔  ∀ 𝑦  ∈  𝐾 ( 𝑐 ‘ 𝑦 )  =  ( ( 𝑏  ↾  𝐾 ) ‘ 𝑦 ) ) ) | 
						
							| 229 | 215 221 228 | 3bitr4d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑐  ∈  𝐶 ) )  →  ( 𝑏  =  ( 𝑐  ∪  { 〈 1 ,  𝑀 〉 ,  〈 𝑀 ,  1 〉 } )  ↔  𝑐  =  ( 𝑏  ↾  𝐾 ) ) ) | 
						
							| 230 | 19 130 189 229 | f1o2d | ⊢ ( 𝜑  →  ( 𝑏  ∈  𝐵  ↦  ( 𝑏  ↾  𝐾 ) ) : 𝐵 –1-1-onto→ 𝐶 ) | 
						
							| 231 | 18 230 | hasheqf1od | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐶 ) ) | 
						
							| 232 | 9 | fveq2i | ⊢ ( ♯ ‘ 𝐶 )  =  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : 𝐾 –1-1-onto→ 𝐾  ∧  ∀ 𝑦  ∈  𝐾 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) | 
						
							| 233 |  | fzfi | ⊢ ( 2 ... ( 𝑁  +  1 ) )  ∈  Fin | 
						
							| 234 |  | diffi | ⊢ ( ( 2 ... ( 𝑁  +  1 ) )  ∈  Fin  →  ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { 𝑀 } )  ∈  Fin ) | 
						
							| 235 | 233 234 | ax-mp | ⊢ ( ( 2 ... ( 𝑁  +  1 ) )  ∖  { 𝑀 } )  ∈  Fin | 
						
							| 236 | 7 235 | eqeltri | ⊢ 𝐾  ∈  Fin | 
						
							| 237 | 1 | derangval | ⊢ ( 𝐾  ∈  Fin  →  ( 𝐷 ‘ 𝐾 )  =  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : 𝐾 –1-1-onto→ 𝐾  ∧  ∀ 𝑦  ∈  𝐾 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) | 
						
							| 238 | 236 237 | ax-mp | ⊢ ( 𝐷 ‘ 𝐾 )  =  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : 𝐾 –1-1-onto→ 𝐾  ∧  ∀ 𝑦  ∈  𝐾 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) | 
						
							| 239 | 1 2 | derangen2 | ⊢ ( 𝐾  ∈  Fin  →  ( 𝐷 ‘ 𝐾 )  =  ( 𝑆 ‘ ( ♯ ‘ 𝐾 ) ) ) | 
						
							| 240 | 236 239 | ax-mp | ⊢ ( 𝐷 ‘ 𝐾 )  =  ( 𝑆 ‘ ( ♯ ‘ 𝐾 ) ) | 
						
							| 241 | 232 238 240 | 3eqtr2ri | ⊢ ( 𝑆 ‘ ( ♯ ‘ 𝐾 ) )  =  ( ♯ ‘ 𝐶 ) | 
						
							| 242 | 51 | simp3d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐾 )  =  ( 𝑁  −  1 ) ) | 
						
							| 243 | 242 | fveq2d | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( ♯ ‘ 𝐾 ) )  =  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 244 | 241 243 | eqtr3id | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐶 )  =  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 245 | 231 244 | eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  =  ( 𝑆 ‘ ( 𝑁  −  1 ) ) ) |