Metamath Proof Explorer


Theorem subfacp1lem6

Description: Lemma for subfacp1 . By induction, we cut up the set of all derangements on N + 1 according to the N possible values of ( f1 ) (since ( f1 ) =/= 1 ), and for each set for fixed M = ( f1 ) , the subset of derangements with ( fM ) = 1 has size S ( N - 1 ) (by subfacp1lem3 ), while the subset with ( fM ) =/= 1 has size S ( N ) (by subfacp1lem5 ). Adding it all up yields the desired equation N ( S ( N ) + S ( N - 1 ) ) for the number of derangements on N + 1 . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses derang.d
|- D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) )
subfac.n
|- S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) )
subfacp1lem.a
|- A = { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) }
Assertion subfacp1lem6
|- ( N e. NN -> ( S ` ( N + 1 ) ) = ( N x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 derang.d
 |-  D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) )
2 subfac.n
 |-  S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) )
3 subfacp1lem.a
 |-  A = { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) }
4 peano2nn
 |-  ( N e. NN -> ( N + 1 ) e. NN )
5 4 nnnn0d
 |-  ( N e. NN -> ( N + 1 ) e. NN0 )
6 1 2 subfacval
 |-  ( ( N + 1 ) e. NN0 -> ( S ` ( N + 1 ) ) = ( D ` ( 1 ... ( N + 1 ) ) ) )
7 5 6 syl
 |-  ( N e. NN -> ( S ` ( N + 1 ) ) = ( D ` ( 1 ... ( N + 1 ) ) ) )
8 fzfid
 |-  ( N e. NN -> ( 1 ... ( N + 1 ) ) e. Fin )
9 1 derangval
 |-  ( ( 1 ... ( N + 1 ) ) e. Fin -> ( D ` ( 1 ... ( N + 1 ) ) ) = ( # ` { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) } ) )
10 8 9 syl
 |-  ( N e. NN -> ( D ` ( 1 ... ( N + 1 ) ) ) = ( # ` { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) } ) )
11 3 fveq2i
 |-  ( # ` A ) = ( # ` { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) } )
12 10 11 eqtr4di
 |-  ( N e. NN -> ( D ` ( 1 ... ( N + 1 ) ) ) = ( # ` A ) )
13 nnuz
 |-  NN = ( ZZ>= ` 1 )
14 4 13 eleqtrdi
 |-  ( N e. NN -> ( N + 1 ) e. ( ZZ>= ` 1 ) )
15 eluzfz1
 |-  ( ( N + 1 ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( N + 1 ) ) )
16 14 15 syl
 |-  ( N e. NN -> 1 e. ( 1 ... ( N + 1 ) ) )
17 f1of
 |-  ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) -> f : ( 1 ... ( N + 1 ) ) --> ( 1 ... ( N + 1 ) ) )
18 17 adantr
 |-  ( ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) -> f : ( 1 ... ( N + 1 ) ) --> ( 1 ... ( N + 1 ) ) )
19 ffvelrn
 |-  ( ( f : ( 1 ... ( N + 1 ) ) --> ( 1 ... ( N + 1 ) ) /\ 1 e. ( 1 ... ( N + 1 ) ) ) -> ( f ` 1 ) e. ( 1 ... ( N + 1 ) ) )
20 19 expcom
 |-  ( 1 e. ( 1 ... ( N + 1 ) ) -> ( f : ( 1 ... ( N + 1 ) ) --> ( 1 ... ( N + 1 ) ) -> ( f ` 1 ) e. ( 1 ... ( N + 1 ) ) ) )
21 16 18 20 syl2im
 |-  ( N e. NN -> ( ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) -> ( f ` 1 ) e. ( 1 ... ( N + 1 ) ) ) )
22 21 ss2abdv
 |-  ( N e. NN -> { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) } C_ { f | ( f ` 1 ) e. ( 1 ... ( N + 1 ) ) } )
23 fveq1
 |-  ( g = f -> ( g ` 1 ) = ( f ` 1 ) )
24 23 eleq1d
 |-  ( g = f -> ( ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) <-> ( f ` 1 ) e. ( 1 ... ( N + 1 ) ) ) )
25 24 cbvabv
 |-  { g | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } = { f | ( f ` 1 ) e. ( 1 ... ( N + 1 ) ) }
26 22 3 25 3sstr4g
 |-  ( N e. NN -> A C_ { g | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } )
27 ssabral
 |-  ( A C_ { g | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } <-> A. g e. A ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) )
28 26 27 sylib
 |-  ( N e. NN -> A. g e. A ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) )
29 rabid2
 |-  ( A = { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } <-> A. g e. A ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) )
30 28 29 sylibr
 |-  ( N e. NN -> A = { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } )
31 30 fveq2d
 |-  ( N e. NN -> ( # ` A ) = ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) )
32 7 12 31 3eqtrd
 |-  ( N e. NN -> ( S ` ( N + 1 ) ) = ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) )
33 elfz1end
 |-  ( ( N + 1 ) e. NN <-> ( N + 1 ) e. ( 1 ... ( N + 1 ) ) )
34 4 33 sylib
 |-  ( N e. NN -> ( N + 1 ) e. ( 1 ... ( N + 1 ) ) )
35 eleq1
 |-  ( x = 1 -> ( x e. ( 1 ... ( N + 1 ) ) <-> 1 e. ( 1 ... ( N + 1 ) ) ) )
36 oveq2
 |-  ( x = 1 -> ( 1 ... x ) = ( 1 ... 1 ) )
37 1z
 |-  1 e. ZZ
38 fzsn
 |-  ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } )
39 37 38 ax-mp
 |-  ( 1 ... 1 ) = { 1 }
40 36 39 eqtrdi
 |-  ( x = 1 -> ( 1 ... x ) = { 1 } )
41 40 eleq2d
 |-  ( x = 1 -> ( ( g ` 1 ) e. ( 1 ... x ) <-> ( g ` 1 ) e. { 1 } ) )
42 fvex
 |-  ( g ` 1 ) e. _V
43 42 elsn
 |-  ( ( g ` 1 ) e. { 1 } <-> ( g ` 1 ) = 1 )
44 41 43 bitrdi
 |-  ( x = 1 -> ( ( g ` 1 ) e. ( 1 ... x ) <-> ( g ` 1 ) = 1 ) )
45 44 rabbidv
 |-  ( x = 1 -> { g e. A | ( g ` 1 ) e. ( 1 ... x ) } = { g e. A | ( g ` 1 ) = 1 } )
46 45 fveq2d
 |-  ( x = 1 -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( # ` { g e. A | ( g ` 1 ) = 1 } ) )
47 oveq1
 |-  ( x = 1 -> ( x - 1 ) = ( 1 - 1 ) )
48 1m1e0
 |-  ( 1 - 1 ) = 0
49 47 48 eqtrdi
 |-  ( x = 1 -> ( x - 1 ) = 0 )
50 49 oveq1d
 |-  ( x = 1 -> ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( 0 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) )
51 46 50 eqeq12d
 |-  ( x = 1 -> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) <-> ( # ` { g e. A | ( g ` 1 ) = 1 } ) = ( 0 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) )
52 35 51 imbi12d
 |-  ( x = 1 -> ( ( x e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) <-> ( 1 e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) = 1 } ) = ( 0 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) )
53 52 imbi2d
 |-  ( x = 1 -> ( ( N e. NN -> ( x e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) <-> ( N e. NN -> ( 1 e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) = 1 } ) = ( 0 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) )
54 eleq1
 |-  ( x = m -> ( x e. ( 1 ... ( N + 1 ) ) <-> m e. ( 1 ... ( N + 1 ) ) ) )
55 oveq2
 |-  ( x = m -> ( 1 ... x ) = ( 1 ... m ) )
56 55 eleq2d
 |-  ( x = m -> ( ( g ` 1 ) e. ( 1 ... x ) <-> ( g ` 1 ) e. ( 1 ... m ) ) )
57 56 rabbidv
 |-  ( x = m -> { g e. A | ( g ` 1 ) e. ( 1 ... x ) } = { g e. A | ( g ` 1 ) e. ( 1 ... m ) } )
58 57 fveq2d
 |-  ( x = m -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) )
59 oveq1
 |-  ( x = m -> ( x - 1 ) = ( m - 1 ) )
60 59 oveq1d
 |-  ( x = m -> ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) )
61 58 60 eqeq12d
 |-  ( x = m -> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) <-> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) )
62 54 61 imbi12d
 |-  ( x = m -> ( ( x e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) <-> ( m e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) )
63 62 imbi2d
 |-  ( x = m -> ( ( N e. NN -> ( x e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) <-> ( N e. NN -> ( m e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) )
64 eleq1
 |-  ( x = ( m + 1 ) -> ( x e. ( 1 ... ( N + 1 ) ) <-> ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) )
65 oveq2
 |-  ( x = ( m + 1 ) -> ( 1 ... x ) = ( 1 ... ( m + 1 ) ) )
66 65 eleq2d
 |-  ( x = ( m + 1 ) -> ( ( g ` 1 ) e. ( 1 ... x ) <-> ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) ) )
67 66 rabbidv
 |-  ( x = ( m + 1 ) -> { g e. A | ( g ` 1 ) e. ( 1 ... x ) } = { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } )
68 67 fveq2d
 |-  ( x = ( m + 1 ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) )
69 oveq1
 |-  ( x = ( m + 1 ) -> ( x - 1 ) = ( ( m + 1 ) - 1 ) )
70 69 oveq1d
 |-  ( x = ( m + 1 ) -> ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) )
71 68 70 eqeq12d
 |-  ( x = ( m + 1 ) -> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) <-> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) )
72 64 71 imbi12d
 |-  ( x = ( m + 1 ) -> ( ( x e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) <-> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) )
73 72 imbi2d
 |-  ( x = ( m + 1 ) -> ( ( N e. NN -> ( x e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) <-> ( N e. NN -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) )
74 eleq1
 |-  ( x = ( N + 1 ) -> ( x e. ( 1 ... ( N + 1 ) ) <-> ( N + 1 ) e. ( 1 ... ( N + 1 ) ) ) )
75 oveq2
 |-  ( x = ( N + 1 ) -> ( 1 ... x ) = ( 1 ... ( N + 1 ) ) )
76 75 eleq2d
 |-  ( x = ( N + 1 ) -> ( ( g ` 1 ) e. ( 1 ... x ) <-> ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) ) )
77 76 rabbidv
 |-  ( x = ( N + 1 ) -> { g e. A | ( g ` 1 ) e. ( 1 ... x ) } = { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } )
78 77 fveq2d
 |-  ( x = ( N + 1 ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) )
79 oveq1
 |-  ( x = ( N + 1 ) -> ( x - 1 ) = ( ( N + 1 ) - 1 ) )
80 79 oveq1d
 |-  ( x = ( N + 1 ) -> ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( ( ( N + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) )
81 78 80 eqeq12d
 |-  ( x = ( N + 1 ) -> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) <-> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) = ( ( ( N + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) )
82 74 81 imbi12d
 |-  ( x = ( N + 1 ) -> ( ( x e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) <-> ( ( N + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) = ( ( ( N + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) )
83 82 imbi2d
 |-  ( x = ( N + 1 ) -> ( ( N e. NN -> ( x e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) <-> ( N e. NN -> ( ( N + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) = ( ( ( N + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) )
84 hash0
 |-  ( # ` (/) ) = 0
85 fveq2
 |-  ( y = 1 -> ( f ` y ) = ( f ` 1 ) )
86 id
 |-  ( y = 1 -> y = 1 )
87 85 86 neeq12d
 |-  ( y = 1 -> ( ( f ` y ) =/= y <-> ( f ` 1 ) =/= 1 ) )
88 87 rspcv
 |-  ( 1 e. ( 1 ... ( N + 1 ) ) -> ( A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y -> ( f ` 1 ) =/= 1 ) )
89 16 88 syl
 |-  ( N e. NN -> ( A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y -> ( f ` 1 ) =/= 1 ) )
90 89 adantld
 |-  ( N e. NN -> ( ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) -> ( f ` 1 ) =/= 1 ) )
91 90 ss2abdv
 |-  ( N e. NN -> { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) } C_ { f | ( f ` 1 ) =/= 1 } )
92 df-ne
 |-  ( ( g ` 1 ) =/= 1 <-> -. ( g ` 1 ) = 1 )
93 23 neeq1d
 |-  ( g = f -> ( ( g ` 1 ) =/= 1 <-> ( f ` 1 ) =/= 1 ) )
94 92 93 bitr3id
 |-  ( g = f -> ( -. ( g ` 1 ) = 1 <-> ( f ` 1 ) =/= 1 ) )
95 94 cbvabv
 |-  { g | -. ( g ` 1 ) = 1 } = { f | ( f ` 1 ) =/= 1 }
96 91 3 95 3sstr4g
 |-  ( N e. NN -> A C_ { g | -. ( g ` 1 ) = 1 } )
97 ssabral
 |-  ( A C_ { g | -. ( g ` 1 ) = 1 } <-> A. g e. A -. ( g ` 1 ) = 1 )
98 96 97 sylib
 |-  ( N e. NN -> A. g e. A -. ( g ` 1 ) = 1 )
99 rabeq0
 |-  ( { g e. A | ( g ` 1 ) = 1 } = (/) <-> A. g e. A -. ( g ` 1 ) = 1 )
100 98 99 sylibr
 |-  ( N e. NN -> { g e. A | ( g ` 1 ) = 1 } = (/) )
101 100 fveq2d
 |-  ( N e. NN -> ( # ` { g e. A | ( g ` 1 ) = 1 } ) = ( # ` (/) ) )
102 nnnn0
 |-  ( N e. NN -> N e. NN0 )
103 1 2 subfacf
 |-  S : NN0 --> NN0
104 103 ffvelrni
 |-  ( N e. NN0 -> ( S ` N ) e. NN0 )
105 102 104 syl
 |-  ( N e. NN -> ( S ` N ) e. NN0 )
106 nnm1nn0
 |-  ( N e. NN -> ( N - 1 ) e. NN0 )
107 103 ffvelrni
 |-  ( ( N - 1 ) e. NN0 -> ( S ` ( N - 1 ) ) e. NN0 )
108 106 107 syl
 |-  ( N e. NN -> ( S ` ( N - 1 ) ) e. NN0 )
109 105 108 nn0addcld
 |-  ( N e. NN -> ( ( S ` N ) + ( S ` ( N - 1 ) ) ) e. NN0 )
110 109 nn0cnd
 |-  ( N e. NN -> ( ( S ` N ) + ( S ` ( N - 1 ) ) ) e. CC )
111 110 mul02d
 |-  ( N e. NN -> ( 0 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = 0 )
112 84 101 111 3eqtr4a
 |-  ( N e. NN -> ( # ` { g e. A | ( g ` 1 ) = 1 } ) = ( 0 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) )
113 112 a1d
 |-  ( N e. NN -> ( 1 e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) = 1 } ) = ( 0 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) )
114 simplr
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> m e. NN )
115 114 13 eleqtrdi
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> m e. ( ZZ>= ` 1 ) )
116 peano2fzr
 |-  ( ( m e. ( ZZ>= ` 1 ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> m e. ( 1 ... ( N + 1 ) ) )
117 115 116 sylancom
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> m e. ( 1 ... ( N + 1 ) ) )
118 117 ex
 |-  ( ( N e. NN /\ m e. NN ) -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> m e. ( 1 ... ( N + 1 ) ) ) )
119 118 imim1d
 |-  ( ( N e. NN /\ m e. NN ) -> ( ( m e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) )
120 oveq1
 |-  ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) -> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) = ( ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) )
121 elfzp1
 |-  ( m e. ( ZZ>= ` 1 ) -> ( ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) <-> ( ( g ` 1 ) e. ( 1 ... m ) \/ ( g ` 1 ) = ( m + 1 ) ) ) )
122 115 121 syl
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) <-> ( ( g ` 1 ) e. ( 1 ... m ) \/ ( g ` 1 ) = ( m + 1 ) ) ) )
123 122 rabbidv
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } = { g e. A | ( ( g ` 1 ) e. ( 1 ... m ) \/ ( g ` 1 ) = ( m + 1 ) ) } )
124 unrab
 |-  ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } u. { g e. A | ( g ` 1 ) = ( m + 1 ) } ) = { g e. A | ( ( g ` 1 ) e. ( 1 ... m ) \/ ( g ` 1 ) = ( m + 1 ) ) }
125 123 124 eqtr4di
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } = ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } u. { g e. A | ( g ` 1 ) = ( m + 1 ) } ) )
126 125 fveq2d
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( # ` ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } u. { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) )
127 fzfi
 |-  ( 1 ... ( N + 1 ) ) e. Fin
128 deranglem
 |-  ( ( 1 ... ( N + 1 ) ) e. Fin -> { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) } e. Fin )
129 127 128 ax-mp
 |-  { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) } e. Fin
130 3 129 eqeltri
 |-  A e. Fin
131 ssrab2
 |-  { g e. A | ( g ` 1 ) e. ( 1 ... m ) } C_ A
132 ssfi
 |-  ( ( A e. Fin /\ { g e. A | ( g ` 1 ) e. ( 1 ... m ) } C_ A ) -> { g e. A | ( g ` 1 ) e. ( 1 ... m ) } e. Fin )
133 130 131 132 mp2an
 |-  { g e. A | ( g ` 1 ) e. ( 1 ... m ) } e. Fin
134 ssrab2
 |-  { g e. A | ( g ` 1 ) = ( m + 1 ) } C_ A
135 ssfi
 |-  ( ( A e. Fin /\ { g e. A | ( g ` 1 ) = ( m + 1 ) } C_ A ) -> { g e. A | ( g ` 1 ) = ( m + 1 ) } e. Fin )
136 130 134 135 mp2an
 |-  { g e. A | ( g ` 1 ) = ( m + 1 ) } e. Fin
137 inrab
 |-  ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } i^i { g e. A | ( g ` 1 ) = ( m + 1 ) } ) = { g e. A | ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) = ( m + 1 ) ) }
138 fzp1disj
 |-  ( ( 1 ... m ) i^i { ( m + 1 ) } ) = (/)
139 42 elsn
 |-  ( ( g ` 1 ) e. { ( m + 1 ) } <-> ( g ` 1 ) = ( m + 1 ) )
140 inelcm
 |-  ( ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) e. { ( m + 1 ) } ) -> ( ( 1 ... m ) i^i { ( m + 1 ) } ) =/= (/) )
141 139 140 sylan2br
 |-  ( ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) = ( m + 1 ) ) -> ( ( 1 ... m ) i^i { ( m + 1 ) } ) =/= (/) )
142 141 necon2bi
 |-  ( ( ( 1 ... m ) i^i { ( m + 1 ) } ) = (/) -> -. ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) = ( m + 1 ) ) )
143 138 142 ax-mp
 |-  -. ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) = ( m + 1 ) )
144 143 rgenw
 |-  A. g e. A -. ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) = ( m + 1 ) )
145 rabeq0
 |-  ( { g e. A | ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) = ( m + 1 ) ) } = (/) <-> A. g e. A -. ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) = ( m + 1 ) ) )
146 144 145 mpbir
 |-  { g e. A | ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) = ( m + 1 ) ) } = (/)
147 137 146 eqtri
 |-  ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } i^i { g e. A | ( g ` 1 ) = ( m + 1 ) } ) = (/)
148 hashun
 |-  ( ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } e. Fin /\ { g e. A | ( g ` 1 ) = ( m + 1 ) } e. Fin /\ ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } i^i { g e. A | ( g ` 1 ) = ( m + 1 ) } ) = (/) ) -> ( # ` ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } u. { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) = ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) )
149 133 136 147 148 mp3an
 |-  ( # ` ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } u. { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) = ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) )
150 126 149 eqtrdi
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) )
151 nncn
 |-  ( m e. NN -> m e. CC )
152 151 ad2antlr
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> m e. CC )
153 ax-1cn
 |-  1 e. CC
154 153 a1i
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> 1 e. CC )
155 152 154 154 addsubd
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( m + 1 ) - 1 ) = ( ( m - 1 ) + 1 ) )
156 155 oveq1d
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( ( ( m - 1 ) + 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) )
157 subcl
 |-  ( ( m e. CC /\ 1 e. CC ) -> ( m - 1 ) e. CC )
158 152 153 157 sylancl
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( m - 1 ) e. CC )
159 109 ad2antrr
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( S ` N ) + ( S ` ( N - 1 ) ) ) e. NN0 )
160 159 nn0cnd
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( S ` N ) + ( S ` ( N - 1 ) ) ) e. CC )
161 158 154 160 adddird
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( m - 1 ) + 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) + ( 1 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) )
162 160 mulid2d
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( 1 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( ( S ` N ) + ( S ` ( N - 1 ) ) ) )
163 exmidne
 |-  ( ( g ` ( m + 1 ) ) = 1 \/ ( g ` ( m + 1 ) ) =/= 1 )
164 orcom
 |-  ( ( ( g ` ( m + 1 ) ) = 1 \/ ( g ` ( m + 1 ) ) =/= 1 ) <-> ( ( g ` ( m + 1 ) ) =/= 1 \/ ( g ` ( m + 1 ) ) = 1 ) )
165 163 164 mpbi
 |-  ( ( g ` ( m + 1 ) ) =/= 1 \/ ( g ` ( m + 1 ) ) = 1 )
166 165 biantru
 |-  ( ( g ` 1 ) = ( m + 1 ) <-> ( ( g ` 1 ) = ( m + 1 ) /\ ( ( g ` ( m + 1 ) ) =/= 1 \/ ( g ` ( m + 1 ) ) = 1 ) ) )
167 andi
 |-  ( ( ( g ` 1 ) = ( m + 1 ) /\ ( ( g ` ( m + 1 ) ) =/= 1 \/ ( g ` ( m + 1 ) ) = 1 ) ) <-> ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) \/ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) )
168 166 167 bitri
 |-  ( ( g ` 1 ) = ( m + 1 ) <-> ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) \/ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) )
169 168 rabbii
 |-  { g e. A | ( g ` 1 ) = ( m + 1 ) } = { g e. A | ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) \/ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) }
170 unrab
 |-  ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } u. { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) = { g e. A | ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) \/ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) }
171 169 170 eqtr4i
 |-  { g e. A | ( g ` 1 ) = ( m + 1 ) } = ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } u. { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } )
172 171 fveq2i
 |-  ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) = ( # ` ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } u. { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) )
173 ssrab2
 |-  { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } C_ A
174 ssfi
 |-  ( ( A e. Fin /\ { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } C_ A ) -> { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } e. Fin )
175 130 173 174 mp2an
 |-  { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } e. Fin
176 ssrab2
 |-  { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } C_ A
177 ssfi
 |-  ( ( A e. Fin /\ { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } C_ A ) -> { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } e. Fin )
178 130 176 177 mp2an
 |-  { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } e. Fin
179 inrab
 |-  ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } i^i { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) = { g e. A | ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) /\ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) }
180 simpr
 |-  ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) -> ( g ` ( m + 1 ) ) = 1 )
181 180 necon3ai
 |-  ( ( g ` ( m + 1 ) ) =/= 1 -> -. ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) )
182 181 adantl
 |-  ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) -> -. ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) )
183 imnan
 |-  ( ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) -> -. ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) <-> -. ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) /\ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) )
184 182 183 mpbi
 |-  -. ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) /\ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) )
185 184 rgenw
 |-  A. g e. A -. ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) /\ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) )
186 rabeq0
 |-  ( { g e. A | ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) /\ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) } = (/) <-> A. g e. A -. ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) /\ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) )
187 185 186 mpbir
 |-  { g e. A | ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) /\ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) } = (/)
188 179 187 eqtri
 |-  ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } i^i { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) = (/)
189 hashun
 |-  ( ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } e. Fin /\ { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } e. Fin /\ ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } i^i { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) = (/) ) -> ( # ` ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } u. { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) ) = ( ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } ) + ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) ) )
190 175 178 188 189 mp3an
 |-  ( # ` ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } u. { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) ) = ( ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } ) + ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) )
191 172 190 eqtri
 |-  ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) = ( ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } ) + ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) )
192 simpll
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> N e. NN )
193 nnne0
 |-  ( m e. NN -> m =/= 0 )
194 0p1e1
 |-  ( 0 + 1 ) = 1
195 194 eqeq2i
 |-  ( ( m + 1 ) = ( 0 + 1 ) <-> ( m + 1 ) = 1 )
196 0cn
 |-  0 e. CC
197 addcan2
 |-  ( ( m e. CC /\ 0 e. CC /\ 1 e. CC ) -> ( ( m + 1 ) = ( 0 + 1 ) <-> m = 0 ) )
198 196 153 197 mp3an23
 |-  ( m e. CC -> ( ( m + 1 ) = ( 0 + 1 ) <-> m = 0 ) )
199 151 198 syl
 |-  ( m e. NN -> ( ( m + 1 ) = ( 0 + 1 ) <-> m = 0 ) )
200 195 199 bitr3id
 |-  ( m e. NN -> ( ( m + 1 ) = 1 <-> m = 0 ) )
201 200 necon3bbid
 |-  ( m e. NN -> ( -. ( m + 1 ) = 1 <-> m =/= 0 ) )
202 193 201 mpbird
 |-  ( m e. NN -> -. ( m + 1 ) = 1 )
203 202 ad2antlr
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> -. ( m + 1 ) = 1 )
204 14 adantr
 |-  ( ( N e. NN /\ m e. NN ) -> ( N + 1 ) e. ( ZZ>= ` 1 ) )
205 elfzp12
 |-  ( ( N + 1 ) e. ( ZZ>= ` 1 ) -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) <-> ( ( m + 1 ) = 1 \/ ( m + 1 ) e. ( ( 1 + 1 ) ... ( N + 1 ) ) ) ) )
206 204 205 syl
 |-  ( ( N e. NN /\ m e. NN ) -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) <-> ( ( m + 1 ) = 1 \/ ( m + 1 ) e. ( ( 1 + 1 ) ... ( N + 1 ) ) ) ) )
207 206 biimpa
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( m + 1 ) = 1 \/ ( m + 1 ) e. ( ( 1 + 1 ) ... ( N + 1 ) ) ) )
208 207 ord
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( -. ( m + 1 ) = 1 -> ( m + 1 ) e. ( ( 1 + 1 ) ... ( N + 1 ) ) ) )
209 203 208 mpd
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( m + 1 ) e. ( ( 1 + 1 ) ... ( N + 1 ) ) )
210 df-2
 |-  2 = ( 1 + 1 )
211 210 oveq1i
 |-  ( 2 ... ( N + 1 ) ) = ( ( 1 + 1 ) ... ( N + 1 ) )
212 209 211 eleqtrrdi
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( m + 1 ) e. ( 2 ... ( N + 1 ) ) )
213 ovex
 |-  ( m + 1 ) e. _V
214 eqid
 |-  ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) = ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } )
215 fveq1
 |-  ( g = h -> ( g ` 1 ) = ( h ` 1 ) )
216 215 eqeq1d
 |-  ( g = h -> ( ( g ` 1 ) = ( m + 1 ) <-> ( h ` 1 ) = ( m + 1 ) ) )
217 fveq1
 |-  ( g = h -> ( g ` ( m + 1 ) ) = ( h ` ( m + 1 ) ) )
218 217 neeq1d
 |-  ( g = h -> ( ( g ` ( m + 1 ) ) =/= 1 <-> ( h ` ( m + 1 ) ) =/= 1 ) )
219 216 218 anbi12d
 |-  ( g = h -> ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) <-> ( ( h ` 1 ) = ( m + 1 ) /\ ( h ` ( m + 1 ) ) =/= 1 ) ) )
220 219 cbvrabv
 |-  { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } = { h e. A | ( ( h ` 1 ) = ( m + 1 ) /\ ( h ` ( m + 1 ) ) =/= 1 ) }
221 eqid
 |-  ( ( _I |` ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ) u. { <. 1 , ( m + 1 ) >. , <. ( m + 1 ) , 1 >. } ) = ( ( _I |` ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ) u. { <. 1 , ( m + 1 ) >. , <. ( m + 1 ) , 1 >. } )
222 f1oeq1
 |-  ( g = f -> ( g : ( 2 ... ( N + 1 ) ) -1-1-onto-> ( 2 ... ( N + 1 ) ) <-> f : ( 2 ... ( N + 1 ) ) -1-1-onto-> ( 2 ... ( N + 1 ) ) ) )
223 fveq2
 |-  ( z = y -> ( g ` z ) = ( g ` y ) )
224 id
 |-  ( z = y -> z = y )
225 223 224 neeq12d
 |-  ( z = y -> ( ( g ` z ) =/= z <-> ( g ` y ) =/= y ) )
226 225 cbvralvw
 |-  ( A. z e. ( 2 ... ( N + 1 ) ) ( g ` z ) =/= z <-> A. y e. ( 2 ... ( N + 1 ) ) ( g ` y ) =/= y )
227 fveq1
 |-  ( g = f -> ( g ` y ) = ( f ` y ) )
228 227 neeq1d
 |-  ( g = f -> ( ( g ` y ) =/= y <-> ( f ` y ) =/= y ) )
229 228 ralbidv
 |-  ( g = f -> ( A. y e. ( 2 ... ( N + 1 ) ) ( g ` y ) =/= y <-> A. y e. ( 2 ... ( N + 1 ) ) ( f ` y ) =/= y ) )
230 226 229 syl5bb
 |-  ( g = f -> ( A. z e. ( 2 ... ( N + 1 ) ) ( g ` z ) =/= z <-> A. y e. ( 2 ... ( N + 1 ) ) ( f ` y ) =/= y ) )
231 222 230 anbi12d
 |-  ( g = f -> ( ( g : ( 2 ... ( N + 1 ) ) -1-1-onto-> ( 2 ... ( N + 1 ) ) /\ A. z e. ( 2 ... ( N + 1 ) ) ( g ` z ) =/= z ) <-> ( f : ( 2 ... ( N + 1 ) ) -1-1-onto-> ( 2 ... ( N + 1 ) ) /\ A. y e. ( 2 ... ( N + 1 ) ) ( f ` y ) =/= y ) ) )
232 231 cbvabv
 |-  { g | ( g : ( 2 ... ( N + 1 ) ) -1-1-onto-> ( 2 ... ( N + 1 ) ) /\ A. z e. ( 2 ... ( N + 1 ) ) ( g ` z ) =/= z ) } = { f | ( f : ( 2 ... ( N + 1 ) ) -1-1-onto-> ( 2 ... ( N + 1 ) ) /\ A. y e. ( 2 ... ( N + 1 ) ) ( f ` y ) =/= y ) }
233 1 2 3 192 212 213 214 220 221 232 subfacp1lem5
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } ) = ( S ` N ) )
234 217 eqeq1d
 |-  ( g = h -> ( ( g ` ( m + 1 ) ) = 1 <-> ( h ` ( m + 1 ) ) = 1 ) )
235 216 234 anbi12d
 |-  ( g = h -> ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) <-> ( ( h ` 1 ) = ( m + 1 ) /\ ( h ` ( m + 1 ) ) = 1 ) ) )
236 235 cbvrabv
 |-  { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } = { h e. A | ( ( h ` 1 ) = ( m + 1 ) /\ ( h ` ( m + 1 ) ) = 1 ) }
237 f1oeq1
 |-  ( g = f -> ( g : ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) -1-1-onto-> ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) <-> f : ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) -1-1-onto-> ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ) )
238 225 cbvralvw
 |-  ( A. z e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( g ` z ) =/= z <-> A. y e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( g ` y ) =/= y )
239 228 ralbidv
 |-  ( g = f -> ( A. y e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( g ` y ) =/= y <-> A. y e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( f ` y ) =/= y ) )
240 238 239 syl5bb
 |-  ( g = f -> ( A. z e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( g ` z ) =/= z <-> A. y e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( f ` y ) =/= y ) )
241 237 240 anbi12d
 |-  ( g = f -> ( ( g : ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) -1-1-onto-> ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) /\ A. z e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( g ` z ) =/= z ) <-> ( f : ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) -1-1-onto-> ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) /\ A. y e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( f ` y ) =/= y ) ) )
242 241 cbvabv
 |-  { g | ( g : ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) -1-1-onto-> ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) /\ A. z e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( g ` z ) =/= z ) } = { f | ( f : ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) -1-1-onto-> ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) /\ A. y e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( f ` y ) =/= y ) }
243 1 2 3 192 212 213 214 236 242 subfacp1lem3
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) = ( S ` ( N - 1 ) ) )
244 233 243 oveq12d
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } ) + ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) ) = ( ( S ` N ) + ( S ` ( N - 1 ) ) ) )
245 191 244 syl5eq
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) = ( ( S ` N ) + ( S ` ( N - 1 ) ) ) )
246 162 245 eqtr4d
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( 1 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) )
247 246 oveq2d
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) + ( 1 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) = ( ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) )
248 156 161 247 3eqtrd
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) )
249 150 248 eqeq12d
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) <-> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) = ( ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) ) )
250 120 249 syl5ibr
 |-  ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) )
251 250 ex
 |-  ( ( N e. NN /\ m e. NN ) -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) )
252 251 a2d
 |-  ( ( N e. NN /\ m e. NN ) -> ( ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) )
253 119 252 syld
 |-  ( ( N e. NN /\ m e. NN ) -> ( ( m e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) )
254 253 expcom
 |-  ( m e. NN -> ( N e. NN -> ( ( m e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) )
255 254 a2d
 |-  ( m e. NN -> ( ( N e. NN -> ( m e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) -> ( N e. NN -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) )
256 53 63 73 83 113 255 nnind
 |-  ( ( N + 1 ) e. NN -> ( N e. NN -> ( ( N + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) = ( ( ( N + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) )
257 4 256 mpcom
 |-  ( N e. NN -> ( ( N + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) = ( ( ( N + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) )
258 34 257 mpd
 |-  ( N e. NN -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) = ( ( ( N + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) )
259 nncn
 |-  ( N e. NN -> N e. CC )
260 pncan
 |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N )
261 259 153 260 sylancl
 |-  ( N e. NN -> ( ( N + 1 ) - 1 ) = N )
262 261 oveq1d
 |-  ( N e. NN -> ( ( ( N + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( N x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) )
263 32 258 262 3eqtrd
 |-  ( N e. NN -> ( S ` ( N + 1 ) ) = ( N x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) )