| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derang.d |  |-  D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) | 
						
							| 2 |  | subfac.n |  |-  S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) | 
						
							| 3 |  | fzfi |  |-  ( 1 ... n ) e. Fin | 
						
							| 4 | 1 | derangf |  |-  D : Fin --> NN0 | 
						
							| 5 | 4 | ffvelcdmi |  |-  ( ( 1 ... n ) e. Fin -> ( D ` ( 1 ... n ) ) e. NN0 ) | 
						
							| 6 | 3 5 | ax-mp |  |-  ( D ` ( 1 ... n ) ) e. NN0 | 
						
							| 7 | 6 | rgenw |  |-  A. n e. NN0 ( D ` ( 1 ... n ) ) e. NN0 | 
						
							| 8 | 2 | fmpt |  |-  ( A. n e. NN0 ( D ` ( 1 ... n ) ) e. NN0 <-> S : NN0 --> NN0 ) | 
						
							| 9 | 7 8 | mpbi |  |-  S : NN0 --> NN0 |