Metamath Proof Explorer


Theorem subfacf

Description: The subfactorial is a function from nonnegative integers to nonnegative integers. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses derang.d D=xFinf|f:x1-1 ontoxyxfyy
subfac.n S=n0D1n
Assertion subfacf S:00

Proof

Step Hyp Ref Expression
1 derang.d D=xFinf|f:x1-1 ontoxyxfyy
2 subfac.n S=n0D1n
3 fzfi 1nFin
4 1 derangf D:Fin0
5 4 ffvelcdmi 1nFinD1n0
6 3 5 ax-mp D1n0
7 6 rgenw n0D1n0
8 2 fmpt n0D1n0S:00
9 7 8 mpbi S:00