| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derang.d |  |-  D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) | 
						
							| 2 |  | subfac.n |  |-  S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) | 
						
							| 3 |  | hashcl |  |-  ( A e. Fin -> ( # ` A ) e. NN0 ) | 
						
							| 4 | 1 2 | subfacval |  |-  ( ( # ` A ) e. NN0 -> ( S ` ( # ` A ) ) = ( D ` ( 1 ... ( # ` A ) ) ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( A e. Fin -> ( S ` ( # ` A ) ) = ( D ` ( 1 ... ( # ` A ) ) ) ) | 
						
							| 6 |  | hashfz1 |  |-  ( ( # ` A ) e. NN0 -> ( # ` ( 1 ... ( # ` A ) ) ) = ( # ` A ) ) | 
						
							| 7 | 3 6 | syl |  |-  ( A e. Fin -> ( # ` ( 1 ... ( # ` A ) ) ) = ( # ` A ) ) | 
						
							| 8 |  | fzfid |  |-  ( A e. Fin -> ( 1 ... ( # ` A ) ) e. Fin ) | 
						
							| 9 |  | hashen |  |-  ( ( ( 1 ... ( # ` A ) ) e. Fin /\ A e. Fin ) -> ( ( # ` ( 1 ... ( # ` A ) ) ) = ( # ` A ) <-> ( 1 ... ( # ` A ) ) ~~ A ) ) | 
						
							| 10 | 8 9 | mpancom |  |-  ( A e. Fin -> ( ( # ` ( 1 ... ( # ` A ) ) ) = ( # ` A ) <-> ( 1 ... ( # ` A ) ) ~~ A ) ) | 
						
							| 11 | 7 10 | mpbid |  |-  ( A e. Fin -> ( 1 ... ( # ` A ) ) ~~ A ) | 
						
							| 12 | 1 | derangen |  |-  ( ( ( 1 ... ( # ` A ) ) ~~ A /\ A e. Fin ) -> ( D ` ( 1 ... ( # ` A ) ) ) = ( D ` A ) ) | 
						
							| 13 | 11 12 | mpancom |  |-  ( A e. Fin -> ( D ` ( 1 ... ( # ` A ) ) ) = ( D ` A ) ) | 
						
							| 14 | 5 13 | eqtr2d |  |-  ( A e. Fin -> ( D ` A ) = ( S ` ( # ` A ) ) ) |