Metamath Proof Explorer


Theorem derangen2

Description: Write the derangement number in terms of the subfactorial. (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses derang.d D=xFinf|f:x1-1 ontoxyxfyy
subfac.n S=n0D1n
Assertion derangen2 AFinDA=SA

Proof

Step Hyp Ref Expression
1 derang.d D=xFinf|f:x1-1 ontoxyxfyy
2 subfac.n S=n0D1n
3 hashcl AFinA0
4 1 2 subfacval A0SA=D1A
5 3 4 syl AFinSA=D1A
6 hashfz1 A01A=A
7 3 6 syl AFin1A=A
8 fzfid AFin1AFin
9 hashen 1AFinAFin1A=A1AA
10 8 9 mpancom AFin1A=A1AA
11 7 10 mpbid AFin1AA
12 1 derangen 1AAAFinD1A=DA
13 11 12 mpancom AFinD1A=DA
14 5 13 eqtr2d AFinDA=SA